bibtype J - Journal Article
ARLID 0468385
utime 20240103213306.1
mtime 20170105235959.9
SCOPUS 85007372598
WOS 000394628800024
DOI 10.1016/j.cam.2016.12.007
title (primary) (eng) Numerical CP Decomposition of Some Difficult Tensors
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0256933
ISSN 0377-0427
title Journal of Computational and Applied Mathematics
volume_id 317
volume 1 (2017)
page_num 362-370
publisher
name Elsevier
keyword Small matrix multiplication
keyword Canonical polyadic tensor decomposition
keyword Levenberg-Marquardt method
author (primary)
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
share 70
name1 Tichavský
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274170
share 20
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0274171
share 10
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0468385.pdf
cas_special
project
ARLID cav_un_auth*0303443
project_id GA14-13713S
agency GA ČR
country CZ
abstract (eng) In this paper, a numerical method is proposed for canonical polyadic (CP) decomposition of small size tensors. The focus is primarily on decomposition of tensors that correspond to small matrix multiplications. Here, rank of the tensors is equal to the smallest number of scalar multiplications that are necessary to accomplish the matrix multiplication. The proposed method is based on a constrained Levenberg-Marquardt optimization. Numerical results indicate the rank and border ranks of tensors that correspond to multiplication of matrices of the size 2x3 and 3x2, 3x3 and 3x2,\n3x3 and 3x3, and 3x4 and 4x3. The ranks are 11, 15, 23 and 29, respectively. In particular, a novel algorithm for computing product of matrices of the sizes 3x4 and 4x3 using 29 multiplications is presented.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2018
num_of_auth 3
mrcbC52 4 A hod 4ah 20231122142146.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0270594
cooperation
ARLID cav_un_auth*0303002
name RIKEN
country JP
mrcbC64 1 Department of Stochastic Informatics UTIA-B 20201 ENGINEERING, ELECTRICAL & ELECTRONIC
confidential S
mrcbC86 1 Article Mathematics Applied
mrcbC86 1 Article Mathematics Applied
mrcbC86 1 Article Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.684
mrcbT16-s 0.938
mrcbT16-B 53.822
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2017
mrcbTft \nSoubory v repozitáři: tichavsky-0468385.pdf
mrcbU14 85007372598 SCOPUS
mrcbU24 PUBMED
mrcbU34 000394628800024 WOS
mrcbU63 cav_un_epca*0256933 Journal of Computational and Applied Mathematics 0377-0427 1879-1778 Roč. 317 č. 1 2017 362 370 Elsevier