bibtype J - Journal Article
ARLID 0469168
utime 20240103213401.3
mtime 20170116235959.9
SCOPUS 84974695790
WOS 000377662400006
DOI 10.1093/jigpal/jzw009
title (primary) (eng) Löwenheim-Skolem theorems for non-classical first-order algebraizable logics
specification
page_count 25 s.
media_type P
serial
ARLID cav_un_epca*0258358
ISSN 1367-0751
title Logic Journal of the IGPL
volume_id 24
volume 3 (2016)
page_num 321-345
publisher
name Oxford University Press
keyword Löwenheim-Skolem theorems
keyword first-order predicate logics
keyword non-classical logics
keyword algebraizable logics
keyword model theory
author (primary)
ARLID cav_un_auth*0311883
name1 Dellunde
name2 P.
country ES
author
ARLID cav_un_auth*0343841
name1 García-Cerdaña
name2 A.
country ES
author
ARLID cav_un_auth*0293476
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
name1 Noguera
name2 Carles
institution UTIA-B
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/MTR/noguera-0469168.pdf
cas_special
project
ARLID cav_un_auth*0292719
project_id GA13-14654S
agency GA ČR
abstract (eng) This paper is a contribution to the model theory of non-classical first-order predicate logics. In a wide framework of first-order systems based on algebraizable logics, we study several notions of homomorphisms between models and find suitable definitions of elementary homomorphism, elementary substructure and elementary equivalence. Then we obtain (downward and upward) Löwenheim-Skolem theorems for these non-classical logics, by direct proofs and by describing their models as classical 2-sorted models.
RIV BA
reportyear 2017
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0269405
confidential S
mrcbC86 1 Article Mathematics Applied|Mathematics|Logic
mrcbT16-e LOGIC|MATHEMATICS|MATHEMATICSAPPLIED
mrcbT16-j 0.37
mrcbT16-s 0.430
mrcbT16-4 Q1
mrcbT16-B 27.853
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2016
mrcbU14 84974695790 SCOPUS
mrcbU24 PUBMED
mrcbU34 000377662400006 WOS
mrcbU63 cav_un_epca*0258358 Logic Journal of the IGPL 1367-0751 1368-9894 Roč. 24 č. 3 2016 321 345 Oxford University Press