bibtype |
J -
Journal Article
|
ARLID |
0469701 |
utime |
20240103213439.0 |
mtime |
20170123235959.9 |
SCOPUS |
85011263187 |
WOS |
000393122500020 |
DOI |
10.1515/ms-2016-0219 |
title
(primary) (eng) |
Stolarsky's inequality for Choquet-like expectation |
specification |
page_count |
14 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0293874 |
ISSN |
0139-9918 |
title
|
Mathematica Slovaca |
volume_id |
66 |
volume |
5 (2016) |
page_num |
1235-1248 |
publisher |
|
|
keyword |
Choquet-like expectation |
keyword |
Stolarsky’s inequality |
keyword |
Minkowski’s inequality |
author
(primary) |
ARLID |
cav_un_auth*0261431 |
share |
50 |
name1 |
Agahi |
name2 |
H. |
country |
IR |
garant |
K |
|
author
|
ARLID |
cav_un_auth*0101163 |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
full_dept |
Department of Econometrics |
share |
50 |
name1 |
Mesiar |
name2 |
Radko |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
abstract
(eng) |
Expectation is the fundamental concept in statistics and probability. As two generalizations\nof expectation, Choquet and Choquet-like expectations are commonly used tools in generalized\nprobability theory. This paper considers the Stolarsky inequality for two classes of Choquet-like integrals.\nThe first class generalizes the Choquet expectation and the second class is an extension of the\nSugeno integral. Moreover, a new Minkowski’s inequality without the comonotonicity condition for two\nclasses of Choquet-like integrals is introduced. Our results significantly generalize the previous results\nin this field. Some examples are given to illustrate the results. |
RIV |
BA |
reportyear |
2017 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0269127 |
confidential |
S |
mrcbC86 |
n.a. Article Mathematics |
mrcbT16-e |
MATHEMATICS |
mrcbT16-j |
0.125 |
mrcbT16-s |
0.498 |
mrcbT16-4 |
Q2 |
mrcbT16-B |
3.123 |
mrcbT16-D |
Q4 |
mrcbT16-E |
Q2 |
arlyear |
2016 |
mrcbU14 |
85011263187 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000393122500020 WOS |
mrcbU63 |
cav_un_epca*0293874 Mathematica Slovaca 0139-9918 1337-2211 Roč. 66 č. 5 2016 1235 1248 Walter de Gruyter |
|