| bibtype |
J -
Journal Article
|
| ARLID |
0469701 |
| utime |
20240103213439.0 |
| mtime |
20170123235959.9 |
| SCOPUS |
85011263187 |
| WOS |
000393122500020 |
| DOI |
10.1515/ms-2016-0219 |
| title
(primary) (eng) |
Stolarsky's inequality for Choquet-like expectation |
| specification |
| page_count |
14 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0293874 |
| ISSN |
0139-9918 |
| title
|
Mathematica Slovaca |
| volume_id |
66 |
| volume |
5 (2016) |
| page_num |
1235-1248 |
| publisher |
|
|
| keyword |
Choquet-like expectation |
| keyword |
Stolarsky’s inequality |
| keyword |
Minkowski’s inequality |
| author
(primary) |
| ARLID |
cav_un_auth*0261431 |
| share |
50 |
| name1 |
Agahi |
| name2 |
H. |
| country |
IR |
| garant |
K |
|
| author
|
| ARLID |
cav_un_auth*0101163 |
| full_dept (cz) |
Ekonometrie |
| full_dept |
Department of Econometrics |
| department (cz) |
E |
| department |
E |
| full_dept |
Department of Econometrics |
| share |
50 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| abstract
(eng) |
Expectation is the fundamental concept in statistics and probability. As two generalizations\nof expectation, Choquet and Choquet-like expectations are commonly used tools in generalized\nprobability theory. This paper considers the Stolarsky inequality for two classes of Choquet-like integrals.\nThe first class generalizes the Choquet expectation and the second class is an extension of the\nSugeno integral. Moreover, a new Minkowski’s inequality without the comonotonicity condition for two\nclasses of Choquet-like integrals is introduced. Our results significantly generalize the previous results\nin this field. Some examples are given to illustrate the results. |
| RIV |
BA |
| reportyear |
2017 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0269127 |
| confidential |
S |
| mrcbC86 |
n.a. Article Mathematics |
| mrcbT16-e |
MATHEMATICS |
| mrcbT16-f |
0.412 |
| mrcbT16-g |
0.045 |
| mrcbT16-h |
8.6 |
| mrcbT16-i |
0.00087 |
| mrcbT16-j |
0.125 |
| mrcbT16-k |
513 |
| mrcbT16-s |
0.498 |
| mrcbT16-4 |
Q2 |
| mrcbT16-5 |
0.304 |
| mrcbT16-6 |
110 |
| mrcbT16-7 |
Q4 |
| mrcbT16-B |
3.123 |
| mrcbT16-C |
11.1 |
| mrcbT16-D |
Q4 |
| mrcbT16-E |
Q2 |
| mrcbT16-P |
11.093 |
| arlyear |
2016 |
| mrcbU14 |
85011263187 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000393122500020 WOS |
| mrcbU63 |
cav_un_epca*0293874 Mathematica Slovaca 0139-9918 1337-2211 Roč. 66 č. 5 2016 1235 1248 Walter de Gruyter |
|