bibtype J - Journal Article
ARLID 0469804
utime 20240103213444.8
mtime 20170125235959.9
SCOPUS 85010689209
WOS 000399503500009
DOI 10.1080/00949655.2017.1280037
title (primary) (eng) Adaptive multiple importance sampling for Gaussian processes
specification
page_count 22 s.
media_type P
serial
ARLID cav_un_epca*0254060
ISSN 0094-9655
title Journal of Statistical Computation and Simulation
volume_id 87
volume 8 (2017)
page_num 1644-1665
publisher
name Taylor & Francis
keyword Gaussian Process
keyword Bayesian estimation
keyword Adaptive importance sampling
author (primary)
ARLID cav_un_auth*0345417
name1 Xiong
name2 X.
country GB
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0345418
name1 Filippone
name2 M.
country FR
source
url http://library.utia.cas.cz/separaty/2017/AS/smidl-0469804.pdf
cas_special
project
ARLID cav_un_auth*0318110
project_id 7F14287
agency GA MŠk
country CZ
abstract (eng) In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0270731
confidential S
mrcbC86 3+4 Article Computer Science Interdisciplinary Applications|Statistics Probability
mrcbC86 3+4 Article Computer Science Interdisciplinary Applications|Statistics Probability
mrcbC86 3+4 Article Computer Science Interdisciplinary Applications|Statistics Probability
mrcbT16-e COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|STATISTICSPROBABILITY
mrcbT16-j 0.414
mrcbT16-s 0.704
mrcbT16-B 24.502
mrcbT16-D Q4
mrcbT16-E Q2
arlyear 2017
mrcbU14 85010689209 SCOPUS
mrcbU24 PUBMED
mrcbU34 000399503500009 WOS
mrcbU63 cav_un_epca*0254060 Journal of Statistical Computation and Simulation 0094-9655 1563-5163 Roč. 87 č. 8 2017 1644 1665 Taylor & Francis