bibtype J - Journal Article
ARLID 0470207
utime 20240103213511.5
mtime 20170201235959.9
SCOPUS 85007011714
WOS 000391312400005
DOI 10.1051/cocv/2015041
title (primary) (eng) Semi-definite relaxations for optimal control problems with oscillation and concentration effects
specification
page_count 23 s.
media_type P
serial
ARLID cav_un_epca*0257855
ISSN 1292-8119
title ESAIM-Control Optimisation and Calculus of Variations
volume_id 23
volume 1 (2017)
page_num 95-117
publisher
name EDP Sciences
keyword optimal control
keyword impulsive control
keyword semidefinite programming
author (primary)
ARLID cav_un_auth*0057770
share 34
name1 Claeys
name2 M.
country BE
author
ARLID cav_un_auth*0015534
share 33
name1 Henrion
name2 D.
country FR
author
ARLID cav_un_auth*0101142
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
share 33
name1 Kružík
name2 Martin
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0470207.pdf
cas_special
abstract (eng) Converging hierarchies of finite-dimensional semi-definite relaxations have been proposed\nfor state-constrained optimal control problems featuring oscillation phenomena, by relaxing controls as Young measures. These semi-definite relaxations were later on extended to optimal control problems depending linearly on the control input and typically featuring concentration phenomena, interpreting the control as a measure of time with a discrete singular component modeling discontinuities or jumps of the state trajectories. In this contribution, we use measures introduced originally by DiPerna and Majda in the partial differential equations literature to model simultaneously, and in a unified framework, possible oscillation and concentration effects of the optimal control policy. We show that hierarchies of semi-definite relaxations can also be constructed to deal numerically with nonconvex optimal control problems with polynomial vector field and semialgebraic state constraints
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2018
num_of_auth 3
mrcbC52 4 A hod 4ah 20231122142230.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0270856
mrcbC62 1
mrcbC64 1 Department of Decision Making Theory UTIA-B 10102 MATHEMATICS, APPLIED
confidential S
mrcbC86 3+4 Article Automation Control Systems|Mathematics Applied
mrcbC86 3+4 Article Automation Control Systems|Mathematics Applied
mrcbC86 3+4 Article Automation Control Systems|Mathematics Applied
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|MATHEMATICSAPPLIED
mrcbT16-j 1.322
mrcbT16-s 1.050
mrcbT16-B 84.589
mrcbT16-D Q1
mrcbT16-E Q2
arlyear 2017
mrcbTft \nSoubory v repozitáři: kruzik-0470207.pdf
mrcbU14 85007011714 SCOPUS
mrcbU24 PUBMED
mrcbU34 000391312400005 WOS
mrcbU63 cav_un_epca*0257855 ESAIM-Control Optimisation and Calculus of Variations 1292-8119 1262-3377 Roč. 23 č. 1 2017 95 117 EDP Sciences