bibtype J - Journal Article
ARLID 0470507
utime 20240103213532.4
mtime 20170207235959.9
SCOPUS 85008199888
WOS 000394199100005
DOI 10.1016/j.camwa.2016.11.037
title (primary) (eng) A FEM approximation of a two-phase obstacle problem and its a posteriori error estimate
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0252559
ISSN 0898-1221
title Computers & Mathematics With Applications
volume_id 73
volume 3 (2017)
page_num 419-432
publisher
name Elsevier
keyword A free boundary problem
keyword A posteriori error analysis
keyword Finite element method
author (primary)
ARLID cav_un_auth*0342513
name1 Bozorgnia
name2 F.
country PT
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/MTR/valdman-0470507.pdf
cas_special
project
ARLID cav_un_auth*0331681
project_id GF16-34894L
agency GA ČR
country CZ
project
ARLID cav_un_auth*0342514
project_id 7AMB16AT015
agency GA MŠk
country CZ
abstract (eng) This paper is concerned with the two-phase obstacle problem, a type of a variational free boundary problem. We recall the basic estimates of Repin and Valdman (2015) and verify them numerically on two examples in two space dimensions. A solution algorithm is proposed for the construction of the finite element approximation to the two-phase obstacle problem. The algorithm is not based on the primal (convex and nondifferentiable) energy minimization problem but on a dual maximization problem formulated for Lagrange multipliers. The dual problem is equivalent to a quadratic programming problem with box constraints. The quality of approximations is measured by a functional a posteriori error estimate which provides a guaranteed upper bound of the difference of approximated and exact energies of the primal minimization problem. The majorant functional in the\nupper bound contains auxiliary variables and it is optimized with respect to them to provide a sharp upper bound.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2018
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122142237.6
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0268129
mrcbC64 1 Department of Decision Making Theory UTIA-B 10102 MATHEMATICS, APPLIED
confidential S
mrcbC86 2 Article Mathematics Applied
mrcbC86 2 Article Mathematics Applied
mrcbC86 2 Article Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.733
mrcbT16-s 1.058
mrcbT16-B 58.147
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2017
mrcbTft \nSoubory v repozitáři: valdman-0470507.pdf
mrcbU14 85008199888 SCOPUS
mrcbU24 PUBMED
mrcbU34 000394199100005 WOS
mrcbU63 cav_un_epca*0252559 Computers & Mathematics With Applications 0898-1221 1873-7668 Roč. 73 č. 3 2017 419 432 Elsevier