bibtype C - Conference Paper (international conference)
ARLID 0471592
utime 20240103213656.4
mtime 20170224235959.9
SCOPUS 85013427588
WOS 000418399200006
DOI 10.1007/978-3-319-52277-7_6
title (primary) (eng) Two Compound Random Field Texture Models
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0471591
ISBN 978-3-319-52276-0
title Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 21st Iberoamerican Congress, CIARP 2016
page_num 44-51
publisher
place Cham
name Springer International Publishing
year 2017
editor
name1 Beltran-Castanon
name2 C.
editor
name1 Nystrom
name2 I.
editor
name1 Famili
name2 F.
keyword Texture
keyword texture synthesis
keyword compound random field model
keyword CAR model
keyword two-dimensional Bernoulli mixture
keyword two-dimensional Gaussian mixture
keyword bidirectional texture function
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101100
name1 Havlíček
name2 Vojtěch
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/RO/haindl-0471592.pdf
cas_special
project
ARLID cav_un_auth*0303439
project_id GA14-10911S
agency GA ČR
country CZ
abstract (eng) Two novel models for texture representation using parametric compound random field models are introduced. These models consist of a set of several sub-models each having different characteristics along with an underlying structure model which controls transitions between them. The structure model is a two-dimensional probabilistic mixture model either of the Bernoulli or Gaussian mixture type. Local textures are modeled using the fully multispectral three-dimensional causal auto-regressive models. Both presented compound random field models allow to reproduce, compress, edit, and enlarge a given measured color, multispectral, or bidirectional texture function (BTF) texture so that ideally both measured and synthetic textures are visually indiscernible.
action
ARLID cav_un_auth*0343392
name CIARP 2016 - 21st Iberoamerican Congress 2016
dates 20161108
mrcbC20-s 20161111
place Lima
country PE
RIV BD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2018
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0271351
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Imaging Science Photographic Technology
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Imaging Science Photographic Technology
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Imaging Science Photographic Technology
arlyear 2017
mrcbU14 85013427588 SCOPUS
mrcbU24 PUBMED
mrcbU34 000418399200006 WOS
mrcbU63 cav_un_epca*0471591 Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 21st Iberoamerican Congress, CIARP 2016 Springer International Publishing 2017 Cham 44 51 978-3-319-52276-0 Lecture Notes in Computer Science 10125
mrcbU67 340 Beltran-Castanon C.
mrcbU67 340 Nystrom I.
mrcbU67 340 Famili F.