bibtype J - Journal Article
ARLID 0471741
utime 20240103213708.8
mtime 20170301235959.9
SCOPUS 85015224484
WOS 000397221700012
DOI 10.1109/TIP.2016.2627802
title (primary) (eng) Fast Bayesian JPEG Decompression and Denoising With Tight Frame Priors
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0253235
ISSN 1057-7149
title IEEE Transactions on Image Processing
volume_id 26
volume 1 (2017)
page_num 490-501
publisher
name Institute of Electrical and Electronics Engineers
keyword image processing
keyword image restoration
keyword JPEG
author (primary)
ARLID cav_un_auth*0108377
name1 Šorel
name2 Michal
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0312355
name1 Bartoš
name2 Michal
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/ZOI/sorel-0471741.pdf
cas_special
project
ARLID cav_un_auth*0338628
project_id GA16-13830S
agency GA ČR
country CZ
abstract (eng) JPEG decompression can be understood as an image reconstruction problem similar to denoising or deconvolution. Such problems can be solved within the Bayesian maximum a posteriori probability framework by iterative optimization algorithms. Prior knowledge about an image is usually described\nby the l1 norm of its sparse domain representation. For many problems, if the sparse domain forms a tight frame, optimization by the alternating direction method of multipliers can be very\nefficient. However, for JPEG, such solution is not straightforward, e.g., due to quantization and subsampling of chrominance channels. Derivation of such solution is the main contribution of this paper. In addition, we show that a minor modification of the proposed algorithm solves simultaneously the problem of image denoising. In the experimental section, we analyze the behavior of the proposed decompression algorithm in a small number of iterations with an interesting conclusion that this mode outperforms full convergence. Example images demonstrate\nthe visual quality of decompression and quantitative experiments compare the algorithm with other state-of-the-art methods.
RIV JD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2018
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122142302.3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0270739
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS
confidential S
mrcbC86 2 Article Computer Science Artificial Intelligence|Engineering Electrical Electronic
mrcbC86 3+4 Article Computer Science Artificial Intelligence|Engineering Electrical Electronic
mrcbC86 3+4 Article Computer Science Artificial Intelligence|Engineering Electrical Electronic
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.817
mrcbT16-s 1.374
mrcbT16-B 91.212
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2017
mrcbTft \nSoubory v repozitáři: sorel-0471741.pdf
mrcbU14 85015224484 SCOPUS
mrcbU24 PUBMED
mrcbU34 000397221700012 WOS
mrcbU63 cav_un_epca*0253235 IEEE Transactions on Image Processing 1057-7149 1941-0042 Roč. 26 č. 1 2017 490 501 Institute of Electrical and Electronics Engineers