bibtype J - Journal Article
ARLID 0472030
utime 20240103213732.4
mtime 20170306235959.9
SCOPUS 84964868782
WOS 000377294100015
DOI 10.1016/j.cnsns.2016.04.010
title (primary) (eng) Power-law cross-correlations estimation under heavy tails
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0314933
ISSN 1007-5704
title Communications in Nonlinear Science and Numerical Simulation
volume_id 40
volume 1 (2016)
page_num 163-172
publisher
name Elsevier
keyword Power-law cross-correlations
keyword Heavy tails
keyword Monte Carlo study
author (primary)
ARLID cav_un_auth*0256902
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
share 100
name1 Krištoufek
name2 Ladislav
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2016/E/kristoufek-0472030.pdf
cas_special
project
ARLID cav_un_auth*0303546
project_id GP14-11402P
agency GA ČR
country CZ
abstract (eng) We examine the performance of six estimators of the power-law cross-correlations -- the detrended cross-correlation analysis, the detrending moving-average cross-correlation analysis, the height cross-correlation analysis, the averaged periodogram estimator, the cross-periodogram estimator and the local cross-Whittle estimator -- under heavy-tailed distributions. The selection of estimators allows to separate these into the time and frequency domain estimators. By varying the characteristic exponent of the $\alpha$-stable distributions which controls the tails behavior, we report several interesting findings. First, the frequency domain estimators are practically unaffected by heavy tails bias-wise. Second, the time domain estimators are upward biased for heavy tails but they have lower estimator variance than the other group for short series. Third, specific estimators are more appropriate depending on distributional properties and length of the analyzed series. In addition, we provide a discussion of implications of these results for empirical applications as well as theoretical explanations.
RIV AH
reportyear 2017
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0269402
confidential S
mrcbC86 2 Article Mathematics Applied|Mathematics Interdisciplinary Applications|Mechanics|Physics Fluids Plasmas|Physics Mathematical
mrcbT16-e MATHEMATICSAPPLIED|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|MECHANICS|PHYSICSFLUIDSPLASMAS|PHYSICSMATHEMATICAL
mrcbT16-j 0.771
mrcbT16-s 1.183
mrcbT16-4 Q1
mrcbT16-B 64.506
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2016
mrcbU14 84964868782 SCOPUS
mrcbU24 PUBMED
mrcbU34 000377294100015 WOS
mrcbU63 cav_un_epca*0314933 Communications in Nonlinear Science and Numerical Simulation 1007-5704 1878-7274 Roč. 40 č. 1 2016 163 172 Elsevier