bibtype J - Journal Article
ARLID 0472057
utime 20240103213734.7
mtime 20170306235959.9
SCOPUS 85016324996
DOI 10.1016/j.imu.2017.02.004
title (primary) (eng) Identification of thyroid gland activity in radioiodine therapy
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0472056
ISSN 2352-9148
title Informatics in Medicine Unlocked
volume_id 7
volume 1 (2017)
page_num 23-33
keyword Biphasic model
keyword Prior constraints
keyword External information
keyword Langevin diffusion
keyword Nonparametric stopping rule
keyword Probabilistic dose estimation
author (primary)
ARLID cav_un_auth*0101119
name1 Jirsa
name2 Ladislav
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0202818
name1 Varga
name2 F.
country CZ
author
ARLID cav_un_auth*0021112
name1 Quinn
name2 A.
country IE
source
url http://library.utia.cas.cz/separaty/2017/AS/jirsa-0472057.pdf
cas_special
project
ARLID cav_un_auth*0001793
project_id 1ET100750404
agency GA AV ČR
project
ARLID cav_un_auth*0001814
project_id 1M0572
agency GA MŠk
project
ARLID cav_un_auth*0331019
project_id GA16-09848S
agency GA ČR
country CZ
abstract (eng) The Bayesian identification of a linear regression model (called the biphasic model) for time dependence of thyroid gland activity in 131I radioiodine therapy is presented. Prior knowledge is elicited via hard parameter constraints and via the merging of external information from an archive of patient records. This prior regularization is shown to be crucial in the reported context, where data typically comprise only two or three high-noise measurements. The posterior distribution is simulated via a Langevin diffusion algorithm, whose optimization for the thyroid activity application is explained. Excellent patient-specific predictions of thyroid activity are reported. The posterior inference of the patient-specific total radiation dose is computed, allowing the uncertainty of the dose to be quantified in a consistent form. The relevance of this work in clinical practice is explained.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2018
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0270812
confidential S
arlyear 2017
mrcbU14 85016324996 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0472056 Informatics in Medicine Unlocked 2352-9148 Roč. 7 č. 1 2017 23 33