bibtype J - Journal Article
ARLID 0472346
utime 20240103213753.0
mtime 20170309235959.9
SCOPUS 85013269709
WOS 000394467800006
DOI 10.1515/snde-2016-0044
title (primary) (eng) Semiparametric nonlinear quantile regression model for financial returns
specification
page_count 17 s.
media_type P
serial
ARLID cav_un_epca*0255788
ISSN 1081-1826
title Studies in Nonlinear Dynamics and Econometrics
volume_id 21
volume 1 (2017)
page_num 81-97
keyword copula quantile regression
keyword realized volatility
keyword value-at-risk
author (primary)
ARLID cav_un_auth*0294289
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
share 50%
name1 Avdulaj
name2 Krenar
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0242028
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 50%
name1 Baruník
name2 Jozef
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/E/avdulaj-0472346.pdf
cas_special
project
ARLID cav_un_auth*0281000
project_id GBP402/12/G097
agency GA ČR
country CZ
abstract (eng) Accurately measuring and forecasting value-at-risk (VaR) remains a challenging task at the heart of financial economic theory. Recently, quantile regression models have been used successfully to capture the conditional quantiles of returns and to forecast VaR accurately. In this paper, we further explore nonlineari- ties in data and propose to couple realized measures with the nonlinear quantile regression framework to explain and forecast the conditional quantiles of financial returns. The nonlinear quantile regression models are implied by the copula specifications and allow us to capture possible nonlinearities, tail dependence, and asymmetries in the conditional quantiles of financial returns. Using high frequency data that covers most liquid US stocks in seven sectors, we provide ample evidence of asymmetric conditional dependence with dif- ferent levels of dependence, which are characteristic for each industry. The backtesting results of estimated VaR favour our approach.
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2018
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0271353
cooperation
ARLID cav_un_auth*0308308
name Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague
institution IES FSV UK
country CZ
confidential S
mrcbC86 3+4 Article|Proceedings Paper Economics|Social Sciences Mathematical Methods
mrcbC86 3+4 Article|Proceedings Paper Economics|Social Sciences Mathematical Methods
mrcbC86 3+4 Article|Proceedings Paper Economics|Social Sciences Mathematical Methods
mrcbT16-e ECONOMICS|SOCIALSCIENCESMATHEMATICALMETHODS
mrcbT16-j 0.302
mrcbT16-s 0.668
mrcbT16-B 18.997
mrcbT16-D Q4
mrcbT16-E Q2
arlyear 2017
mrcbU14 85013269709 SCOPUS
mrcbU24 PUBMED
mrcbU34 000394467800006 WOS
mrcbU63 cav_un_epca*0255788 Studies in Nonlinear Dynamics and Econometrics 1081-1826 1558-3708 Roč. 21 č. 1 2017 81 97