bibtype C - Conference Paper (international conference)
ARLID 0472586
utime 20240111140936.3
mtime 20170313235959.9
SCOPUS 85023755669
WOS 000414286202143
DOI 10.13140/RG.2.2.29610.82882
title (primary) (eng) Partitioned Hierarchical Alternating Least Squares Algorithm for CP Tensor Decomposition
specification
page_count 5 s.
media_type C
serial
ARLID cav_un_epca*0472585
ISBN 978-1-5090-4116-9
title 2017 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2017
page_num 2542-2546
publisher
place New Orleans
name IEEE
year 2017
keyword tensor decomposition
keyword canonical polyadic decomposition
keyword PARAFAC
keyword alternating least squares
author (primary)
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0472586.pdf
source_size 123 kB
cas_special
project
ARLID cav_un_auth*0345929
project_id GA17-00902S
agency GA ČR
abstract (eng) Canonical polyadic decomposition (CPD), also known as PARAFAC, is a representation of a given tensor as a sum of rank-one tensors. Traditional method for accomplishing CPD is the alternating least squares (ALS) algorithm. This algorithm is easy to implement with very low computational\ncomplexity per iteration. A disadvantage is that in difficult scenarios, where factor matrices in the decomposition contain nearly collinear columns, the number of iterations needed to achieve convergence might be very large. In this paper, we propose a modification of the algorithm which has similar complexity per iteration as ALS, but in difficult scenarios it needs a significantly lower number of iterations.
action
ARLID cav_un_auth*0344245
name 2017 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2017
dates 20170305
mrcbC20-s 20170309
place New Orleans
country US
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0271355
confidential S
mrcbC86 n.a. Proceedings Paper Acoustics|Engineering Electrical Electronic
arlyear 2017
mrcbU14 85023755669 SCOPUS
mrcbU24 PUBMED
mrcbU34 000414286202143 WOS
mrcbU56 123 kB
mrcbU63 cav_un_epca*0472585 2017 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2017 978-1-5090-4116-9 2542 2546 New Orleans IEEE 2017 CFP17ICA-USB