bibtype C - Conference Paper (international conference)
ARLID 0472594
utime 20240111140936.3
mtime 20170313235959.9
SCOPUS 85013448377
WOS 000418581400004
DOI 10.1007/978-3-319-53547-0
title (primary) (eng) Blind Source Separation of Single Channel Mixture Using Tensorization and Tensor Diagonalization
specification
page_count 11 s.
media_type C
serial
ARLID cav_un_epca*0472593
ISBN 978-3-319-53546-3
ISSN 0302-9743
title Latent Variable Analysis and Signal Separation, 13th International Conference, LVA/ICA 2017
page_num 36-46
publisher
place Cham
name Springer
year 2017
editor
name1 Tichavský
name2 Petr
editor
name1 Babaie-Zadeh
name2 Massoud
editor
name1 Michel
name2 Olivier J.J.
editor
name1 Thirion-Moreau
name2 Nadege
keyword blind source separation
keyword tensor diagonalization
keyword block-term decomposition
keyword damped sinusoid
author (primary)
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0472594.pdf
source_size 299 kB
cas_special
project
ARLID cav_un_auth*0345929
project_id GA17-00902S
agency GA ČR
abstract (eng) This paper deals with estimation of structured signals such as damped sinusoids, exponentials, polynomials, and their products from single channel data. It is shown that building tensors from this kind of data results in tensors with hidden block structure which can be recovered through the tensor diagonalization. The tensor diagonalization means multiplying tensors by several matrices along its modes so that the outcome is approximately diagonal or block-diagonal of 3-rd order tensors. The proposed method can be applied to estimation of parameters of multiple damped sinusoids, and their products with polynomial.
action
ARLID cav_un_auth*0344250
name Latent Variable Analysis and Signal Separation
dates 20170221
mrcbC20-s 20170223
place Grenoble
country FR
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0271357
confidential S
mrcbC86 n.a. Proceedings Paper Acoustics|Computer Science Theory Methods
mrcbC86 n.a. Proceedings Paper Acoustics|Computer Science Theory Methods
mrcbC86 n.a. Proceedings Paper Acoustics|Computer Science Theory Methods
mrcbT16-s 0.328
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2017
mrcbU14 85013448377 SCOPUS
mrcbU24 PUBMED
mrcbU34 000418581400004 WOS
mrcbU56 299 kB
mrcbU63 cav_un_epca*0472593 Latent Variable Analysis and Signal Separation, 13th International Conference, LVA/ICA 2017 978-3-319-53546-3 0302-9743 1611-3349 36 46 Cham Springer 2017 Lecture Notes in Computer Science 10169
mrcbU67 340 Tichavský Petr
mrcbU67 340 Babaie-Zadeh Massoud
mrcbU67 340 Michel Olivier J.J.
mrcbU67 340 Thirion-Moreau Nadege