bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0473144 |
utime |
20240111140937.5 |
mtime |
20170317235959.9 |
SCOPUS |
85013449803 |
WOS |
000418581400017 |
DOI |
10.1007/978-3-319-53547-0 |
title
(primary) (eng) |
Adaptive Blind Separation of Instantaneous Linear Mixtures of Independent Sources |
specification |
page_count |
10 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0472593 |
ISBN |
978-3-319-53546-3 |
ISSN |
0302-9743 |
title
|
Latent Variable Analysis and Signal Separation, 13th International Conference, LVA/ICA 2017 |
page_num |
172-181 |
publisher |
place |
Cham |
name |
Springer |
year |
2017 |
|
editor |
name1 |
Tichavský |
name2 |
Petr |
|
editor |
name1 |
Babaie-Zadeh |
name2 |
Massoud |
|
editor |
name1 |
Michel |
name2 |
Olivier J.J. |
|
editor |
name1 |
Thirion-Moreau |
name2 |
Nadege |
|
|
keyword |
blind source separation |
keyword |
independent component analysis |
keyword |
autoregressive processes |
author
(primary) |
ARLID |
cav_un_auth*0319418 |
full_dept (cz) |
Stochastická informatika |
full_dept (eng) |
Department of Stochastic Informatics |
department (cz) |
SI |
department (eng) |
SI |
full_dept |
Department of Stochastic Informatics |
share |
40 |
name1 |
Šembera |
name2 |
Ondřej |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101212 |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
full_dept |
Department of Stochastic Informatics |
share |
40 |
name1 |
Tichavský |
name2 |
Petr |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0230113 |
share |
20 |
name1 |
Koldovský |
name2 |
Z. |
country |
CZ |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0345929 |
project_id |
GA17-00902S |
agency |
GA ČR |
|
abstract
(eng) |
In many applications, there is a need to blindly separate independent sources from their linear instantaneous mixtures while the mixing matrix or source properties are slowly or abruptly changing in time. The easiest way to separate the data is to consider off-line estimation of the model parameters repeatedly in time shifting window. Another popular method is the stochastic natural gradient algorithm, which relies on non-Gaussianity of the separated signals and is adaptive by its nature. In this paper, we propose an adaptive version of two blind source separation algorithms which exploit non-stationarity of the original signals. The results indicate that the proposed algorithms slightly outperform the natural gradient in the trade-off between the algorithm’s ability to quickly adapt to changes in the mixing matrix and the variance of the estimate when the mixing is stationary. |
action |
ARLID |
cav_un_auth*0344250 |
name |
Latent Variable Analysis and Signal Separation |
dates |
20170221 |
mrcbC20-s |
20170223 |
place |
Grenoble |
country |
FR |
|
RIV |
BB |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10103 |
reportyear |
2018 |
num_of_auth |
3 |
presentation_type |
PO |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0271358 |
confidential |
S |
article_num |
17 |
mrcbC86 |
3+4 Proceedings Paper Acoustics|Computer Science Theory Methods |
mrcbC86 |
3+4 Proceedings Paper Acoustics|Computer Science Theory Methods |
mrcbC86 |
3+4 Proceedings Paper Acoustics|Computer Science Theory Methods |
mrcbT16-s |
0.328 |
mrcbT16-4 |
Q2 |
mrcbT16-E |
Q2 |
arlyear |
2017 |
mrcbU14 |
85013449803 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000418581400017 WOS |
mrcbU56 |
627 kB |
mrcbU63 |
cav_un_epca*0472593 Latent Variable Analysis and Signal Separation, 13th International Conference, LVA/ICA 2017 978-3-319-53546-3 0302-9743 1611-3349 172 181 Cham Springer 2017 Lecture Notes in Computer Science 10169 |
mrcbU67 |
340 Tichavský Petr |
mrcbU67 |
340 Babaie-Zadeh Massoud |
mrcbU67 |
340 Michel Olivier J.J. |
mrcbU67 |
340 Thirion-Moreau Nadege |
|