bibtype C - Conference Paper (international conference)
ARLID 0473144
utime 20240111140937.5
mtime 20170317235959.9
SCOPUS 85013449803
WOS 000418581400017
DOI 10.1007/978-3-319-53547-0
title (primary) (eng) Adaptive Blind Separation of Instantaneous Linear Mixtures of Independent Sources
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0472593
ISBN 978-3-319-53546-3
ISSN 0302-9743
title Latent Variable Analysis and Signal Separation, 13th International Conference, LVA/ICA 2017
page_num 172-181
publisher
place Cham
name Springer
year 2017
editor
name1 Tichavský
name2 Petr
editor
name1 Babaie-Zadeh
name2 Massoud
editor
name1 Michel
name2 Olivier J.J.
editor
name1 Thirion-Moreau
name2 Nadege
keyword blind source separation
keyword independent component analysis
keyword autoregressive processes
author (primary)
ARLID cav_un_auth*0319418
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
share 40
name1 Šembera
name2 Ondřej
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
share 40
name1 Tichavský
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0230113
share 20
name1 Koldovský
name2 Z.
country CZ
source
url http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0473144.pdf
source_size 627 kB
cas_special
project
ARLID cav_un_auth*0345929
project_id GA17-00902S
agency GA ČR
abstract (eng) In many applications, there is a need to blindly separate independent sources from their linear instantaneous mixtures while the mixing matrix or source properties are slowly or abruptly changing in time. The easiest way to separate the data is to consider off-line estimation of the model parameters repeatedly in time shifting window. Another popular method is the stochastic natural gradient algorithm, which relies on non-Gaussianity of the separated signals and is adaptive by its nature. In this paper, we propose an adaptive version of two blind source separation algorithms which exploit non-stationarity of the original signals. The results indicate that the proposed algorithms slightly outperform the natural gradient in the trade-off between the algorithm’s ability to quickly adapt to changes in the mixing matrix and the variance of the estimate when the mixing is stationary.
action
ARLID cav_un_auth*0344250
name Latent Variable Analysis and Signal Separation
dates 20170221
mrcbC20-s 20170223
place Grenoble
country FR
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0271358
confidential S
article_num 17
mrcbC86 3+4 Proceedings Paper Acoustics|Computer Science Theory Methods
mrcbC86 3+4 Proceedings Paper Acoustics|Computer Science Theory Methods
mrcbC86 3+4 Proceedings Paper Acoustics|Computer Science Theory Methods
mrcbT16-s 0.328
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2017
mrcbU14 85013449803 SCOPUS
mrcbU24 PUBMED
mrcbU34 000418581400017 WOS
mrcbU56 627 kB
mrcbU63 cav_un_epca*0472593 Latent Variable Analysis and Signal Separation, 13th International Conference, LVA/ICA 2017 978-3-319-53546-3 0302-9743 1611-3349 172 181 Cham Springer 2017 Lecture Notes in Computer Science 10169
mrcbU67 340 Tichavský Petr
mrcbU67 340 Babaie-Zadeh Massoud
mrcbU67 340 Michel Olivier J.J.
mrcbU67 340 Thirion-Moreau Nadege