bibtype J - Journal Article
ARLID 0474387
utime 20240103214032.4
mtime 20170505235959.9
SCOPUS 85017217771
WOS 000401043400032
DOI 10.1016/j.sigpro.2017.04.001
title (primary) (eng) Non-orthogonal tensor diagonalization
specification
page_count 8 s.
serial
ARLID cav_un_epca*0255076
ISSN 0165-1684
title Signal Processing
volume_id 138
volume 1 (2017)
page_num 313-320
publisher
name Elsevier
keyword multilinear models
keyword canonical polyadic decomposition
keyword parallel factor analysis
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0474387.pdf
cas_special
project
ARLID cav_un_auth*0303443
project_id GA14-13713S
agency GA ČR
country CZ
project
ARLID cav_un_auth*0345929
project_id GA17-00902S
agency GA ČR
abstract (eng) Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of\nthe tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric\ndiagonalization of an order-three tensor, (2) a similar algorithm for a non-symmetric AJD, also called a two-sided diagonalization of an order-three tensor, and (3) an algorithm for three-sided\ndiagonalization of order-three or order-four tensors. The latter two algorithms may serve for canonical polyadic (CP) tensor decomposition, and in certain scenarios they can outperform\ntraditional CP decomposition methods. Finally, we propose (4) similar algorithms for tensor block diagonalization, which is related to tensor block-term decomposition. The proposed algorithm\ncan either outperform the existing block-term decomposition algorithms, or produce good initial points for their application.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0271454
confidential S
mrcbC86 2 Article Engineering Electrical Electronic
mrcbC86 2 Article Engineering Electrical Electronic
mrcbC86 2 Article Engineering Electrical Electronic
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.817
mrcbT16-s 0.940
mrcbT16-B 63.612
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2017
mrcbU14 85017217771 SCOPUS
mrcbU24 PUBMED
mrcbU34 000401043400032 WOS
mrcbU63 cav_un_epca*0255076 Signal Processing 0165-1684 1872-7557 Roč. 138 č. 1 2017 313 320 Elsevier