bibtype J - Journal Article
ARLID 0474696
utime 20240103214056.9
mtime 20170522235959.9
SCOPUS 85009231891
WOS 000406683400006
DOI 10.1007/s00180-016-0708-9
title (primary) (eng) On weighted and locally polynomial directional quantile regression
specification
page_count 18 s.
serial
ARLID cav_un_epca*0252572
ISSN 0943-4062
title Computational Statistics
volume_id 32
volume 3 (2017)
page_num 929-946
publisher
name Springer
keyword Quantile regression
keyword Nonparametric regression
keyword Nonparametric regression
author (primary)
ARLID cav_un_auth*0101069
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
name1 Boček
name2 Pavel
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0266474
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
name1 Šiman
name2 Miroslav
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/SI/bocek-0458380.pdf
cas_special
project
ARLID cav_un_auth*0307008
project_id GA14-07234S
agency GA ČR
abstract (eng) The article deals with certain quantile regression methods for vector responses. In particular, it describes weighted and locally polynomial extensions to the projectional quantile regression, discusses their properties, addresses their computational side, compares their outcome with recent analogous generalizations of the competing multiple-output directional quantile regression, demonstrates a link between the two competing methodologies, complements the results already available in the literature, illustrates the concepts with a few simulated and insightful examples illustrating some of their features, and shows their application to a real financial data set, namely to Forex 1M exchange rates. The real-data example strongly indicates that the presented methods might have a huge impact on the analysis of multivariate time series consisting of two to four dimensional observations.
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2018
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0271770
confidential S
mrcbC86 2 Article Statistics Probability
mrcbC86 2 Article Statistics Probability
mrcbC86 2 Article Statistics Probability
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 0.611
mrcbT16-s 0.803
mrcbT16-B 43.288
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2017
mrcbU14 85009231891 SCOPUS
mrcbU24 PUBMED
mrcbU34 000406683400006 WOS
mrcbU63 cav_un_epca*0252572 Computational Statistics 0943-4062 1613-9658 Roč. 32 č. 3 2017 929 946 Springer