bibtype J - Journal Article
ARLID 0475349
utime 20240103214152.3
mtime 20170619235959.9
SCOPUS 85018567758
WOS 000402212200030
DOI 10.1016/j.cma.2017.03.042
title (primary) (eng) eXtended variational quasicontinuum methodology for lattice networks with damage and crack propagation
specification
page_count 24 s.
media_type P
serial
ARLID cav_un_epca*0256442
ISSN 0045-7825
title Computer Methods in Applied Mechanics and Engineering
volume_id 320
volume 1 (2017)
page_num 769-792
publisher
name Elsevier
keyword Lattice networks
keyword Quasicontinuum method
keyword Damage
keyword Extended finite element method
keyword Multiscale modelling
keyword Variational formulation
author (primary)
ARLID cav_un_auth*0347118
share 34
name1 Rokoš
name2 O.
country CZ
garant K
author
ARLID cav_un_auth*0347119
share 33
name1 Peerlings
name2 R. H. J.
country NL
garant S
author
ARLID cav_un_auth*0357917
name1 Zeman
name2 Jan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/AS/zeman-0475349.pdf
cas_special
project
ARLID cav_un_auth*0331681
project_id GF16-34894L
agency GA ČR
country CZ
abstract (eng) Lattice networks with dissipative interactions are often employed to analyse materials with discrete micro- or meso-structures, or for a description of heterogeneous materials which can be modelled discretely. They are, however, computationally prohibitive for engineering-scale applications. The (variational) QuasiContinuum (QC) method is a concurrent multiscale approach that reduces their computational cost by fully resolving the (dissipative) lattice network in small regions of interest while coarsening elsewhere. When applied to damageable lattices, moving crack tips can be captured by adaptive mesh refinement schemes, whereas fully -resolved trails in crack wakes can be removed by mesh coarsening. In order to address crack propagation efficiently and accurately, we develop in this contribution the necessary generalizations of the variational QC methodology.
RIV JJ
FORD0 20000
FORD1 20500
FORD2 20501
reportyear 2018
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0272345
confidential S
mrcbC86 2 Article Engineering Multidisciplinary|Mathematics Interdisciplinary Applications|Mechanics
mrcbC86 3+4 Article Engineering Multidisciplinary|Mathematics Interdisciplinary Applications|Mechanics
mrcbC86 3+4 Article Engineering Multidisciplinary|Mathematics Interdisciplinary Applications|Mechanics
mrcbT16-e ENGINEERINGMULTIDISCIPLINARY|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|MECHANICS
mrcbT16-j 1.622
mrcbT16-s 2.883
mrcbT16-B 95.789
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2017
mrcbU14 85018567758 SCOPUS
mrcbU24 PUBMED
mrcbU34 000402212200030 WOS
mrcbU63 cav_un_epca*0256442 Computer Methods in Applied Mechanics and Engineering 0045-7825 1879-2138 Roč. 320 č. 1 2017 769 792 Elsevier