bibtype J - Journal Article
ARLID 0476150
utime 20240111140942.7
mtime 20170714235959.9
SCOPUS 85024485443
WOS 000405681300001
DOI 10.1049/iet-cta.2016.1067
title (primary) (eng) On the internal stability of non-linear dynamic inversion: application to flight control
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0320539
ISSN 1751-8644
title IET Control Theory and Applications
volume_id 11
volume 12 (2017)
page_num 1849-1861
keyword flight control
keyword non-linear dynamic inversion
keyword stability
author (primary)
ARLID cav_un_auth*0347646
name1 Alam
name2 M.
country CZ
author
ARLID cav_un_auth*0101074
name1 Čelikovský
name2 Sergej
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
institution UTIA-B
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type článek
url http://library.utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf
source_size 4.38 MB
cas_special
project
ARLID cav_un_auth*0347203
project_id GA17-04682S
agency GA ČR
country CZ
abstract (eng) Aircraft are highly non-linear systems, but flight control laws are traditionally designed from a set of linearised models. Due to the application of linear control laws on a non-linear system, the real performance ability of the aircraft is not fully utilised. In addition, in adverse situations like near stall, the aircraft develops significant non-linearities, and linear control laws do not perform well. This study therefore considers the design of a longitudinal flight controller for a fixed-wing aircraft using non-linear dynamic inversion technique or, in terms of control theory, partial exact feedback linearisation. A novel contribution of this study is the proposed combination of three different automatic flight controllers that provide complete 3-DOF longitudinal control. A detailed analysis of the internal dynamics for each controller is also presented. It has been shown that for each controller the internal dynamics are stable. This makes the controller suitable for various flight conditions. The aims of these flight controllers are threefold.
RIV BC
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2018
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122142531.3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0272688
cooperation
ARLID cav_un_auth*0305697
name Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Measurement
institution FEL CVUT v Praze
country CZ
mrcbC64 1 Department of Control Theory UTIA-B 20205 AUTOMATION & CONTROL SYSTEMS
confidential S
mrcbC86 3+4 Article Automation Control Systems|Engineering Electrical Electronic|Instruments Instrumentation
mrcbC86 3+4 Article Automation Control Systems|Engineering Electrical Electronic|Instruments Instrumentation
mrcbC86 3+4 Article Automation Control Systems|Engineering Electrical Electronic|Instruments Instrumentation
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC|INSTRUMENTSINSTRUMENTATION
mrcbT16-j 0.897
mrcbT16-s 1.416
mrcbT16-B 69.091
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2017
mrcbTft \nSoubory v repozitáři: celikovsky-0476150.pdf
mrcbU14 85024485443 SCOPUS
mrcbU24 PUBMED
mrcbU34 000405681300001 WOS
mrcbU56 článek 4.38 MB
mrcbU63 cav_un_epca*0320539 IET Control Theory and Applications 1751-8644 1751-8652 Roč. 11 č. 12 2017 1849 1861