bibtype J - Journal Article
ARLID 0476587
utime 20240903170637.1
mtime 20170731235959.9
SCOPUS 85026546598
WOS 000407667400006
DOI 10.14736/kyb-2017-3-0480
title (primary) (eng) Directional quantile regression in R
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 53
volume 3 (2017)
page_num 480-492
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword multivariate quantile
keyword regression quantile
keyword halfspace depth
keyword depth contour
author (primary)
ARLID cav_un_auth*0101069
name1 Boček
name2 Pavel
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0266474
name1 Šiman
name2 Miroslav
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/SI/bocek-0476587.pdf
cas_special
project
ARLID cav_un_auth*0307008
project_id GA14-07234S
agency GA ČR
abstract (eng) Recently, the eminently popular standard quantile regression has been generalized to the multiple-output regression setup by means of directional regression quantiles in two rather interrelated ways. Unfortunately, they lead to complicated optimization problems involving parametric programming, and this may be the main obstacle standing in the way of their wide dissemination. The presented R package modQR is intended to address this issue. It originates as a quite faithful translation of the authors' moQuantile toolbox for Octave and MATLAB, and provides all the necessary computational support for both the directional multiple-output quantile regression methods to the wide statistical public. The article offers a concise summary of the statistical theory behind modQR, overviews the package in brief, points out its departures from moQuantile, comments on its use and performance, and demonstrates its application.
RIV BD
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2018
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0273538
confidential S
mrcbC86 3+4 Article Computer Science Cybernetics
mrcbC86 3+4 Article Computer Science Cybernetics
mrcbC86 3+4 Article Computer Science Cybernetics
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-j 0.224
mrcbT16-s 0.321
mrcbT16-B 18.907
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2017
mrcbU14 85026546598 SCOPUS
mrcbU24 PUBMED
mrcbU34 000407667400006 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 53 č. 3 2017 480 492 Ústav teorie informace a automatizace AV ČR, v. v. i.