bibtype C - Conference Paper (international conference)
ARLID 0476653
utime 20240111140943.6
mtime 20170801235959.9
SCOPUS 85027682538
WOS 000443416600017
DOI 10.1109/SCSP.2017.7973843
title (primary) (eng) Analysis of discrete data from traffic accidents
specification
page_count 4 s.
media_type E
serial
ARLID cav_un_epca*0476652
ISBN 978-1-5386-3826-2
title 2017 Smart City Symposium Prague (SCSP)
publisher
place Piscataway
name IEEE
year 2017
keyword data analysis
keyword multivariate analysis
keyword traffic accident
author (primary)
ARLID cav_un_auth*0205791
name1 Pecherková
name2 Pavla
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2017/ZS/pecherkova-0476653.pdf
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) This paper deals with the data analysis of traffic accidents. Traffic accidents can be caused by different reasons, e.g., by watchfulness of a driver, failure of a vehicle, bad structural arrangements, etc. The aim of this paper is to investigate seriousness of incidents in dependence on different circumstances of an accident. Description of these circumstances leads to the use of a high number of different variables (about 50 variables), which are mostly discrete. The majority of statistical methods dealing with discrete variables use a frequency table. This is not suitable for traffic data because of a huge dimension. In this paper, several methods are proposed for solution to the problem with high-dimensional traffic data.
action
ARLID cav_un_auth*0348232
name 2017 Smart City Symposium Prague (SCSP)
dates 20170525
mrcbC20-s 20170526
place Prague
country CZ
RIV BB
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2018
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0273535
mrcbC61 1
confidential S
article_num 7973843
mrcbC83 RIV/67985556:_____/17:00476653!RIV18-AV0-67985556 191975665 Doplnění UT WOS
mrcbC83 RIV/67985556:_____/17:00476653!RIV18-GA0-67985556 191965016 Doplnění UT WOS
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Interdisciplinary Applications|Urban Studies
arlyear 2017
mrcbU14 85027682538 SCOPUS
mrcbU34 000443416600017 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0476652 2017 Smart City Symposium Prague (SCSP) 978-1-5386-3826-2 Piscataway IEEE 2017