bibtype J - Journal Article
ARLID 0477040
utime 20240103214359.8
mtime 20170815235959.9
SCOPUS 85026497280
WOS 000428317500011
DOI 10.1007/s00153-017-0577-0
title (primary) (eng) Implicational (semilinear) logics III: completeness properties
specification
page_count 30 s.
serial
ARLID cav_un_epca*0256186
ISSN 0933-5846
title Archive for Mathematical Logic
volume_id 57
page_num 391-420
publisher
name Springer
keyword abstract algebraic logic
keyword protoalgebraic logics
keyword implicational logics
keyword disjunctional logics
keyword semilinear logics
keyword non-classical logics
keyword completeness theorems
keyword rational completeness
author (primary)
ARLID cav_un_auth*0100737
name1 Cintula
name2 Petr
institution UIVT-O
full_dept (cz) Oddělení teoretické informatiky
full_dept (eng) Department of Theoretical Computer Science
full_dept Department of Theoretical Computer Science
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0293476
name1 Noguera
name2 Carles
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id GA13-14654S
agency GA ČR
ARLID cav_un_auth*0292719
project
project_id 689176
agency EC
country XE
ARLID cav_un_auth*0339025
abstract (eng) This paper presents an abstract study of completeness properties of non-classical logics with respect to matricial semantics. Given a class of reduced matrix models we define three completeness properties of increasing strength and characterize them in several useful ways. Some of these characterizations hold in absolute generality and others are for logics with generalized implication or disjunction connectives, as considered in the previous papers. Finally, we consider completeness with respect to matrices with a linear dense order and characterize it in terms of an extension property and a syntactical metarule. This is the final part of the investigation started and developed in the papers (Cintula and Noguera in Arch Math Logic 49(4):417–446, 2010 and Arch Math Logic 53(3):353–372, 2016).
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2019
mrcbC47 UTIA-B 10000 10100 10101
mrcbC52 4 A hod O 4ah 4o 20231122142603.1
mrcbC55 UTIA-B BA
inst_support RVO:67985807
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0273436
mrcbC64 1 Department of Theoretical Computer Science UIVT-O 10100 LOGIC
confidential S
mrcbC86 1 Article Mathematics|Logic
mrcbT16-e LOGIC|MATHEMATICS
mrcbT16-j 0.589
mrcbT16-s 0.768
mrcbT16-B 51.318
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2018
mrcbTft \nSoubory v repozitáři: a0477040.pdf, 0477040.pdf
mrcbU14 85026497280 SCOPUS
mrcbU24 PUBMED
mrcbU34 000428317500011 WOS
mrcbU63 cav_un_epca*0256186 Archive for Mathematical Logic 0933-5846 1432-0665 Roč. 57 3-4 2018 391 420 Springer