bibtype C - Conference Paper (international conference)
ARLID 0477043
utime 20240103214400.0
mtime 20170815235959.9
SCOPUS 85020024365
WOS 000418403500007
DOI 10.1007/978-3-319-54084-9_7
title (primary) (eng) Likelihood tempering in dynamic model averaging
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0474860
ISBN 978-3-319-54083-2
ISSN 2194-1009
title Bayesian Statistics in Action
page_num 67-77
publisher
place Cham
name Springer International Publishing
year 2017
editor
name1 Argiento
name2 R.
editor
name1 Lanzarone
name2 E.
editor
name1 Villalobos
name2 I. A.
editor
name1 Mattei
name2 A.
keyword Model averaging
keyword Model uncertainty
keyword Prediction
keyword Tempered likelihood
author (primary)
ARLID cav_un_auth*0306030
name1 Reichl
name2 Jan
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0242543
name1 Dedecius
name2 Kamil
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/AS/dedecius-0477043.pdf
cas_special
project
ARLID cav_un_auth*0303543
project_id GP14-06678P
agency GA ČR
country CZ
abstract (eng) We study the problem of online prediction with a set of candidate models using dynamic model averaging procedures. The standard assumptions of model averaging state that the set of admissible models contains the true one(s), and that these models are continuously updated by valid data. However, both these assumptions are often violated in practice. The models used for online tasks are often more or less misspecified and the data corrupted (which is, mathematically, a demonstration of the same problem). Both these factors negatively influence the Bayesian inference and the resulting predictions. In this paper, we propose to suppress these issues by extending the Bayesian update by a sort of likelihood tempering, moderating the impact of observed data to inference. The method is compared to the generic dynamic model averaging and to an alternative solution via sequential quasi-Bayesian mixture modeling.
action
ARLID cav_un_auth*0346501
name Bayesian Young Statisticians Meeting, BAYSM 2016
dates 20160619
mrcbC20-s 20160621
place Florence
country IT
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274025
confidential S
mrcbC86 n.a. Proceedings Paper Statistics Probability
mrcbC86 3+4 Proceedings Paper Statistics Probability
mrcbC86 3+4 Proceedings Paper Statistics Probability
mrcbT16-s 0.217
mrcbT16-E Q4
arlyear 2017
mrcbU14 85020024365 SCOPUS
mrcbU24 PUBMED
mrcbU34 000418403500007 WOS
mrcbU63 cav_un_epca*0474860 Bayesian Statistics in Action Springer International Publishing 2017 Cham 67 77 978-3-319-54083-2 2194-1009
mrcbU67 340 Argiento R.
mrcbU67 340 Lanzarone E.
mrcbU67 340 Villalobos I. A.
mrcbU67 340 Mattei A.