bibtype J - Journal Article
ARLID 0477044
utime 20240103214400.1
mtime 20170815235959.9
SCOPUS 85023175924
WOS 000407100700002
DOI 10.1109/TSP.2017.2725226
title (primary) (eng) Factorized Estimation of Partially Shared Parameters in Diffusion Networks
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0256727
ISSN 1053-587X
title IEEE Transactions on Signal Processing
volume_id 65
volume 19 (2017)
page_num 5153-5163
keyword Diffusion network
keyword Diffusion estimation
keyword Heterogeneous parameters
keyword Multitask networks
author (primary)
ARLID cav_un_auth*0242543
name1 Dedecius
name2 Kamil
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0263972
name1 Sečkárová
name2 Vladimíra
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/AS/dedecius-0477044.pdf
cas_special
project
ARLID cav_un_auth*0303543
project_id GP14-06678P
agency GA ČR
country CZ
project
ARLID cav_un_auth*0331019
project_id GA16-09848S
agency GA ČR
abstract (eng) Collaborative estimation of partially common parameters over ad hoc diffusion networks where the nodes directly communicate with their neighbors is a challenging task. The problem complexity is significantly high under the lack of knowledge which parameters are shared and among which network nodes. In this paper, we propose an adaptive framework suitable for this task. It is abstractly formulated in the Bayesian and information-theoretic paradigms and, therefore, versatile and easily applicable to a relatively wide class of models. If the observation models belong to the exponential family and the same functional types of prior probability distributions are used for estimation of the shared parameters, the method reduces to an analytically tractable variational algorithm extended by a procedure that passes messages among network nodes. A simulation example demonstrates that the collaboration improves estimation performance of both the shared and strictly local parameters, compared with the noncollaborative scenario.
RIV BD
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2018
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122142603.3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274027
mrcbC64 1 Department of Adaptive Systems UTIA-B 10200 COMPUTER SCIENCE, CYBERNETICS
confidential S
mrcbC86 3+4 Article Engineering Electrical Electronic
mrcbC86 3+4 Article Engineering Electrical Electronic
mrcbC86 3+4 Article Engineering Electrical Electronic
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.559
mrcbT16-s 1.247
mrcbT16-B 87.621
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2017
mrcbTft \nSoubory v repozitáři: dedecius-0477044.pdf
mrcbU14 85023175924 SCOPUS
mrcbU24 PUBMED
mrcbU34 000407100700002 WOS
mrcbU63 cav_un_epca*0256727 IEEE Transactions on Signal Processing 1053-587X 1941-0476 Roč. 65 č. 19 2017 5153 5163