bibtype J - Journal Article
ARLID 0477091
utime 20240103214403.9
mtime 20170817235959.9
SCOPUS 85023597858
WOS 000407667900008
DOI 10.1016/j.jmaa.2017.06.086
title (primary) (eng) On the equivalence of the Choquet, pan- and concave integrals on finite spaces
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0257017
ISSN 0022-247X
title Journal of Mathematical Analysis and Applications
volume_id 456
volume 1 (2017)
page_num 151-162
publisher
name Elsevier
keyword (M)-property
keyword Choquet integral
keyword Concave integral
keyword Minimal atom
keyword Monotone measure
keyword Pan-integral
author (primary)
ARLID cav_un_auth*0258953
share 30
name1 Ouyang
name2 Y.
country CN
author
ARLID cav_un_auth*0348640
name1 Li
name2 J.
country CN
author
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 40
name1 Mesiar
name2 Radko
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/E/mesiar-0477091.pdf
cas_special
abstract (eng) In this paper we introduce the concept of maximal cluster of minimal atoms on monotone measure spaces and by means of this new concept we continue to investigate the relation between the Choquet integral and the pan-integral on finite spaces. It is proved that the (M)-property of a monotone measure is a sufficient condition that the Choquet integral coincides with the pan-integral based on the usual addition + and multiplication. Thus, combining our recent results, we provide a necessary and sufficient condition that the Choquet integral is equivalent to the pan-integral on finite spaces. Meanwhile, we also use the characteristics of minimal atoms of monotone measure to present another necessary and sufficient condition that these two kinds of integrals are equivalent on finite spaces. The relationships among the Choquet integral, the pan-integral and the concave integral are summarized.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2018
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274029
confidential S
mrcbC86 1 Article Mathematics Applied|Mathematics
mrcbC86 1* Article Mathematics Applied|Mathematics
mrcbC86 1* Article Mathematics Applied|Mathematics
mrcbT16-e MATHEMATICS|MATHEMATICSAPPLIED
mrcbT16-j 0.737
mrcbT16-s 1.103
mrcbT16-B 62.848
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2017
mrcbU14 85023597858 SCOPUS
mrcbU24 PUBMED
mrcbU34 000407667900008 WOS
mrcbU63 cav_un_epca*0257017 Journal of Mathematical Analysis and Applications 0022-247X 1096-0813 Roč. 456 č. 1 2017 151 162 Elsevier