bibtype J - Journal Article
ARLID 0477092
utime 20240103214403.9
mtime 20170817235959.9
SCOPUS 85018765123
WOS 000403514700006
DOI 10.1016/j.ijar.2017.04.008
title (primary) (eng) Possibility and necessity measures and integral equivalence
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 86
volume 1 (2017)
page_num 62-72
publisher
name Elsevier
keyword Integral equivalence
keyword Necessity measure
keyword Possibility measure
keyword Survival function
keyword Universal integral
author (primary)
ARLID cav_un_auth*0348641
name1 Chen
name2 T.
country CN
author
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 40
name1 Mesiar
name2 Radko
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0348640
name1 Li
name2 J.
country CN
author
ARLID cav_un_auth*0307047
share 20
name1 Stupňanová
name2 A.
country SK
garant K
source
url http://library.utia.cas.cz/separaty/2017/E/mesiar-0477092.pdf
cas_special
abstract (eng) Integral equivalence of couples (mu, x) and (mu, y), where mu is a possibility (necessity) measure on [n] ={1,..., n} and x, y is an element of [0,1](n) is discussed and studied. We characterize the sets H(mu, x) of all y such that the couples (mu, x) and (mu, y) are integral equivalent and we add an illustrative example. Subsequently, a new characterization of possibility (necessity) measures is obtained and the coincidence of universal integrals for possibility (necessity) measures and particular vectors from [0,1](n) is shown, thus generalizing these results introduced by Dubois and Rico for the Choquet and the Sugeno integrals.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274030
confidential S
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.658
mrcbT16-s 0.866
mrcbT16-B 44.33
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2017
mrcbU14 85018765123 SCOPUS
mrcbU24 PUBMED
mrcbU34 000403514700006 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 86 č. 1 2017 62 72 Elsevier