bibtype J - Journal Article
ARLID 0477168
utime 20240103214409.8
mtime 20170820235959.9
SCOPUS 85009223244
WOS 000407655600031
DOI 10.1016/j.ijar.2016.12.012
title (primary) (eng) An empirical comparison of popular structure learning algorithms with a view to gene network inference
specification
page_count 14 s.
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 88
volume 1 (2017)
page_num 602-613
publisher
name Elsevier
keyword Bayesian networks
keyword Structure learning
keyword Reverse engineering
keyword Gene networks
author (primary)
ARLID cav_un_auth*0322154
name1 Djordjilović
name2 V.
country IT
author
ARLID cav_un_auth*0322155
name1 Chiogna
name2 M.
country IT
author
ARLID cav_un_auth*0101228
name1 Vomlel
name2 Jiří
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/MTR/vomlel-0477168.pdf
cas_special
project
ARLID cav_un_auth*0332303
project_id GA16-12010S
agency GA ČR
country CZ
abstract (eng) In this work, we study the performance of different structure learning algorithms in the context of inferring gene networks from transcription data. We consider representatives of different structure learning approaches, some of which perform unrestricted searches, such as the PC algorithm and the Gobnilp method, and some of which introduce prior information on the structure, such as the K2 algorithm. Competing methods are evaluated both in terms of their predictive accuracy and their ability to reconstruct the true underlying network. Areal data application based on an experiment performed by the University of Padova is also considered.
RIV JD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2018
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0273649
mrcbC62 1
confidential S
mrcbC86 3+4 Article|Proceedings Paper Computer Science Artificial Intelligence
mrcbC86 3+4 Article|Proceedings Paper Computer Science Artificial Intelligence
mrcbC86 3+4 Article|Proceedings Paper Computer Science Artificial Intelligence
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.658
mrcbT16-s 0.866
mrcbT16-B 44.33
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2017
mrcbU14 85009223244 SCOPUS
mrcbU24 PUBMED
mrcbU34 000407655600031 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 88 č. 1 2017 602 613 Elsevier