bibtype C - Conference Paper (international conference)
ARLID 0477182
utime 20240103214411.5
mtime 20170821235959.9
SCOPUS 85025121692
WOS 000432996600014
DOI 10.1007/978-3-319-61581-3_14
title (primary) (eng) Solving Trajectory Optimization Problems by Influence Diagrams
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0476601
ISBN 978-3-319-61580-6
title Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017
page_num 146-155
publisher
place Cham
name Springer
year 2017
editor
name1 Antonucci
name2 A.
editor
name1 Cholvy
name2 L.
editor
name1 Papini
name2 O.
keyword Influence diagrams
keyword Probabilistic graphical models
keyword Optimal control theory
keyword Brachistochrone problem
keyword Goddard problem
author (primary)
ARLID cav_un_auth*0101228
name1 Vomlel
name2 Jiří
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/MTR/vomlel-0477182.pdf
cas_special
project
ARLID cav_un_auth*0332303
project_id GA16-12010S
agency GA ČR
country CZ
project
ARLID cav_un_auth*0348851
project_id GA17-08182S
agency GA ČR
abstract (eng) Influence diagrams are decision-theoretic extensions of Bayesian networks. In this paper we show how influence diagrams can be used to solve trajectory optimization problems. These problems are traditionally solved by methods of optimal control theory but influence diagrams offer an alternative that brings benefits over the traditional approaches. We describe how a trajectory optimization problem can be represented as an influence diagram. We illustrate our approach on two well-known trajectory optimization problems – the Brachistochrone Problem and the Goddard Problem. We present results of numerical experiments on these two problems, compare influence diagrams with optimal control methods, and discuss the benefits of influence diagrams.
action
ARLID cav_un_auth*0348187
name ECSQARU: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty
dates 20170710
mrcbC20-s 20170714
place Lugano
country CH
RIV JD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2018
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0273650
mrcbC62 1
confidential S
mrcbC83 RIV/67985556:_____/17:00477182!RIV18-AV0-67985556 191975676 Doplnění UT WOS
mrcbC83 RIV/67985556:_____/17:00477182!RIV18-GA0-67985556 191965021 Doplnění UT WOS
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Logic
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Logic
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Logic
arlyear 2017
mrcbU14 85025121692 SCOPUS
mrcbU24 PUBMED
mrcbU34 000432996600014 WOS
mrcbU63 cav_un_epca*0476601 Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017 Springer 2017 Cham 146 155 978-3-319-61580-6 Lecture Notes in Computer Science 10369
mrcbU67 340 Antonucci A.
mrcbU67 340 Cholvy L.
mrcbU67 340 Papini O.