bibtype B - Monography
ARLID 0477300
utime 20240111140944.5
mtime 20170828235959.9
ISBN 978-3-319-64670-1
WOS 000446970800007
DOI 10.1007/978-3-319-64671-8
title (primary) (eng) Algorithms and Programs of Dynamic Mixture Estimation. Unified Approach to Different Types of Components
publisher
place Cham
name Springer
pub_time 2017
specification
page_count 113 s.
media_type P
edition
name SpringerBriefs in Statistics
keyword dynamic mixture
keyword recursive mixture estimation
keyword algorithms and programs
author (primary)
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url https://link.springer.com/book/10.1007/978-3-319-64671-8
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing the estimation algorithm for a mixture of components modeled by distributions with reproducible statistics. It offers the recursive estimation of dynamic mixtures, which are free of iterative processes and close to analytical solutions as much as possible. In addition, these methods can be used online and simultaneously perform learning, which improves their efficiency during estimation. The book includes detailed program codes for solving the presented theoretical tasks. Codes are implemented in the open source platform for engineering computations. The program codes given serve to illustrate the theory and demonstrate the work of the included algorithms.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122142612.3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274040
mrcbC64 1 Department of Signal Processing UTIA-B 10103 STATISTICS & PROBABILITY
confidential S
mrcbC83 RIV/67985556:_____/17:00477300!RIV18-AV0-67985556 191975678 Doplnění UT WOS
mrcbC83 RIV/67985556:_____/17:00477300!RIV18-GA0-67985556 191965022 Doplnění UT WOS
mrcbC86 3+4 Article Statistics Probability
mrcbC86 3+4 Article Statistics Probability
mrcbC86 3+4 Article Statistics Probability
arlyear 2017
mrcbTft \nSoubory v repozitáři: nagy-0477300.pdf
mrcbU10 2017
mrcbU10 Cham Springer
mrcbU12 978-3-319-64670-1
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 000446970800007 WOS
mrcbU56 pdf