bibtype |
J -
Journal Article
|
ARLID |
0477549 |
utime |
20240103214441.4 |
mtime |
20170905235959.9 |
SCOPUS |
85027842943 |
WOS |
000413380900017 |
DOI |
10.1016/j.ijar.2017.08.001 |
title
(primary) (eng) |
On linearity of pan-integral and pan-integrable functions space |
specification |
page_count |
12 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0256774 |
ISSN |
0888-613X |
title
|
International Journal of Approximate Reasoning |
volume_id |
90 |
volume |
1 (2017) |
page_num |
307-318 |
publisher |
|
|
keyword |
linearity |
keyword |
monotone measure |
keyword |
Pan-integrable space |
author
(primary) |
ARLID |
cav_un_auth*0258953 |
share |
30 |
name1 |
Ouyang |
name2 |
Y. |
country |
CN |
garant |
K |
|
author
|
ARLID |
cav_un_auth*0348640 |
name1 |
Li |
name2 |
J. |
country |
CN |
|
author
|
ARLID |
cav_un_auth*0101163 |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
full_dept |
Department of Econometrics |
share |
40 |
name1 |
Mesiar |
name2 |
Radko |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
abstract
(eng) |
This paper investigates the linearity and integrability of the (+, center dot)based pan-integrals on subadditive monotone measure spaces. It is shown that all nonnegative pan-integrable functions form a convex cone and the restriction of the pan-integral to the convex cone is a positive homogeneous linear functional. We extend the pan-integral to the general real-valued measurable functions. The generalized pan-integrals are shown to be symmetric and fully homogeneous, and to remain additive for all pan-integrable functions. Thus for a subadditive monotone measure the generalized pan-integral is linear functional defined on the linear space which consists of all pan-integrable functions. We define a p-norm on the linear space consisting of all p-th order pan-integrable functions, and when the monotone measure pi, is continuous we obtain a complete normed linear space L-pan(p) (X, t) equipped with the p-norm, i.e., an analogue of classical Lebesgue space L-P |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2018 |
num_of_auth |
3 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0274042 |
confidential |
S |
mrcbC86 |
3+4 Article Computer Science Artificial Intelligence |
mrcbC86 |
3+4 Article Computer Science Artificial Intelligence |
mrcbC86 |
3+4 Article Computer Science Artificial Intelligence |
mrcbT16-e |
COMPUTERSCIENCEARTIFICIALINTELLIGENCE |
mrcbT16-j |
0.658 |
mrcbT16-s |
0.866 |
mrcbT16-B |
44.33 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q2 |
arlyear |
2017 |
mrcbU14 |
85027842943 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000413380900017 WOS |
mrcbU63 |
cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 90 č. 1 2017 307 318 Elsevier |
|