bibtype J - Journal Article
ARLID 0477549
utime 20240103214441.4
mtime 20170905235959.9
SCOPUS 85027842943
WOS 000413380900017
DOI 10.1016/j.ijar.2017.08.001
title (primary) (eng) On linearity of pan-integral and pan-integrable functions space
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 90
volume 1 (2017)
page_num 307-318
publisher
name Elsevier
keyword linearity
keyword monotone measure
keyword Pan-integrable space
author (primary)
ARLID cav_un_auth*0258953
share 30
name1 Ouyang
name2 Y.
country CN
garant K
author
ARLID cav_un_auth*0348640
name1 Li
name2 J.
country CN
author
ARLID cav_un_auth*0101163
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 40
name1 Mesiar
name2 Radko
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/E/mesiar-0477549.pdf
cas_special
abstract (eng) This paper investigates the linearity and integrability of the (+, center dot)based pan-integrals on subadditive monotone measure spaces. It is shown that all nonnegative pan-integrable functions form a convex cone and the restriction of the pan-integral to the convex cone is a positive homogeneous linear functional. We extend the pan-integral to the general real-valued measurable functions. The generalized pan-integrals are shown to be symmetric and fully homogeneous, and to remain additive for all pan-integrable functions. Thus for a subadditive monotone measure the generalized pan-integral is linear functional defined on the linear space which consists of all pan-integrable functions. We define a p-norm on the linear space consisting of all p-th order pan-integrable functions, and when the monotone measure pi, is continuous we obtain a complete normed linear space L-pan(p) (X, t) equipped with the p-norm, i.e., an analogue of classical Lebesgue space L-P
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2018
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274042
confidential S
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.658
mrcbT16-s 0.866
mrcbT16-B 44.33
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2017
mrcbU14 85027842943 SCOPUS
mrcbU24 PUBMED
mrcbU34 000413380900017 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 90 č. 1 2017 307 318 Elsevier