bibtype |
J -
Journal Article
|
ARLID |
0477818 |
utime |
20240103214501.2 |
mtime |
20170912235959.9 |
SCOPUS |
85021051439 |
WOS |
000423844000007 |
DOI |
10.3934/dcdss.2017071 |
title
(primary) (eng) |
Inverse truss design as a conic mathematical program with equilibrium constraints |
specification |
page_count |
22 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0310286 |
ISSN |
1937-1632 |
title
|
Discrete and Continuous Dynamical systems - Series S |
part_title |
Series S |
volume_id |
10 |
volume |
6 (2017) |
page_num |
1329-1350 |
publisher |
|
|
keyword |
conic optimization |
keyword |
truss topology optimization |
keyword |
mathematical programs with equilibrium constraints |
author
(primary) |
ARLID |
cav_un_auth*0101131 |
name1 |
Kočvara |
name2 |
Michal |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101173 |
name1 |
Outrata |
name2 |
Jiří |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0321507 |
project_id |
GA15-00735S |
agency |
GA ČR |
|
abstract
(eng) |
We formulate an inverse optimal design problem as a Mathematical Programming problem with Equilibrium Constraints (MPEC). The equilibrium constraints are in the form of a second-order conic optimization problem. Using the so-called Implicit Programming technique, we reformulate the bilevel optimization problem as a single-level nonsmooth nonconvex problem. The major part of the article is devoted to the computation of a subgradient of the resulting composite objective function. The article is concluded by numerical examples demonstrating, for the first time, that the Implicit Programming technique can be efficiently used in the numerical solution of MPECs with conic constraints on the lower level. |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10102 |
reportyear |
2018 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0274044 |
confidential |
S |
mrcbC86 |
3+4 Article Mathematics Applied |
mrcbC86 |
3+4 Article Mathematics Applied |
mrcbC86 |
3+4 Article Mathematics Applied |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-j |
0.459 |
mrcbT16-s |
0.602 |
mrcbT16-B |
28.949 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q3 |
arlyear |
2017 |
mrcbU14 |
85021051439 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000423844000007 WOS |
mrcbU63 |
cav_un_epca*0310286 Discrete and Continuous Dynamical systems - Series S Series S 1937-1632 1937-1179 Roč. 10 č. 6 2017 1329 1350 AIMS Press |
|