bibtype J - Journal Article
ARLID 0477818
utime 20240103214501.2
mtime 20170912235959.9
SCOPUS 85021051439
WOS 000423844000007
DOI 10.3934/dcdss.2017071
title (primary) (eng) Inverse truss design as a conic mathematical program with equilibrium constraints
specification
page_count 22 s.
media_type P
serial
ARLID cav_un_epca*0310286
ISSN 1937-1632
title Discrete and Continuous Dynamical systems - Series S
part_title Series S
volume_id 10
volume 6 (2017)
page_num 1329-1350
publisher
name AIMS Press
keyword conic optimization
keyword truss topology optimization
keyword mathematical programs with equilibrium constraints
author (primary)
ARLID cav_un_auth*0101131
name1 Kočvara
name2 Michal
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101173
name1 Outrata
name2 Jiří
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/MTR/kocvara-0477818.pdf
cas_special
project
ARLID cav_un_auth*0321507
project_id GA15-00735S
agency GA ČR
abstract (eng) We formulate an inverse optimal design problem as a Mathematical Programming problem with Equilibrium Constraints (MPEC). The equilibrium constraints are in the form of a second-order conic optimization problem. Using the so-called Implicit Programming technique, we reformulate the bilevel optimization problem as a single-level nonsmooth nonconvex problem. The major part of the article is devoted to the computation of a subgradient of the resulting composite objective function. The article is concluded by numerical examples demonstrating, for the first time, that the Implicit Programming technique can be efficiently used in the numerical solution of MPECs with conic constraints on the lower level.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2018
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274044
confidential S
mrcbC86 3+4 Article Mathematics Applied
mrcbC86 3+4 Article Mathematics Applied
mrcbC86 3+4 Article Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.459
mrcbT16-s 0.602
mrcbT16-B 28.949
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2017
mrcbU14 85021051439 SCOPUS
mrcbU24 PUBMED
mrcbU34 000423844000007 WOS
mrcbU63 cav_un_epca*0310286 Discrete and Continuous Dynamical systems - Series S Series S 1937-1632 1937-1179 Roč. 10 č. 6 2017 1329 1350 AIMS Press