bibtype J - Journal Article
ARLID 0478074
utime 20240103214519.1
mtime 20170919235959.9
SCOPUS 85030092933
WOS 000419919900001
DOI 10.1002/acs.2821
title (primary) (eng) Marginalized approximate filtering of state-space models
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0256772
ISSN 0890-6327
title International Journal of Adaptive Control and Signal Processing
volume_id 32
volume 1 (2018)
page_num 1-12
publisher
name Wiley
keyword approximate filtering
keyword marginalized filters
keyword particle filtering
author (primary)
ARLID cav_un_auth*0242543
name1 Dedecius
name2 Kamil
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/AS/dedecius-0478074.pdf
cas_special
project
ARLID cav_un_auth*0331019
project_id GA16-09848S
agency GA ČR
country CZ
abstract (eng) The marginalized particle filtering (MPF) is a powerful technique reducing the number of particles necessary to effectively estimate hidden states of state-space models. This paper alleviates the assumption of a fully known and computationally tractable observation model. Exploiting the recent developments in the theory of approximate Bayesian computation (ABC) filtration, an ABC counterpart of MPF is proposed, applicable when the observation model is too complex to be evaluated analytically or even numerically, but it is still possible to sample from it by plugging in the state. The novelty is 2-fold. First, ABC methods have not been used in marginalized filtering yet. Second, a new multivariate robust method for evaluation of particle weights is proposed. The goal of this paper is to demonstrate the idea on the background of the MPF with a particular accent on exposition.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2019
num_of_auth 1
mrcbC52 4 A hod 4ah 20231122142640.9
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274422
mrcbC64 1 Department of Adaptive Systems UTIA-B 10200 COMPUTER SCIENCE, CYBERNETICS
confidential S
mrcbC86 3+4 Article Automation Control Systems|Engineering Electrical Electronic
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.655
mrcbT16-s 0.885
mrcbT16-B 48.708
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2018
mrcbTft \nSoubory v repozitáři: dedecius-0478074.pdf
mrcbU14 85030092933 SCOPUS
mrcbU24 PUBMED
mrcbU34 000419919900001 WOS
mrcbU63 cav_un_epca*0256772 International Journal of Adaptive Control and Signal Processing 0890-6327 1099-1115 Roč. 32 č. 1 2018 1 12 Wiley