bibtype C - Conference Paper (international conference)
ARLID 0478195
utime 20240111140946.2
mtime 20170920235959.9
SCOPUS 85040192839
WOS 000427311500056
DOI 10.1109/SISY.2017.8080574
title (primary) (eng) Clustering with a Model of Sub-Mixtures of Different Distributions
specification
page_count 6 s.
media_type C
serial
ARLID cav_un_epca*0478194
ISBN 978-1-5386-3854-5
title Proceedings of IEEE 15th International Symposium on Intelligent Systems and Informatics SISY 2017
page_num 315-320
publisher
place Piscataway
name IEEE
year 2017
keyword clustering
keyword sub-mixtures
keyword different distributions
author (primary)
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0349960
name1 Petrouš
name2 Matej
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2017/ZS/nagy-0478195.pdf
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) This paper deals with a modeling of data by several mixtures of different distributions within a task of clustering. This issue can be required from a practical point of view, e.g., for a multi-modal system, which generates measurements described by different distributions. The approach is based on the partition of the data on several parts, the factorization of the joint probability density function according to these parts and the estimation of each conditional mixture separately. Due to the data-based construction of the general model from the estimated components, the most suitable combination of the components is used at each time instant. The illustrative experiments are demonstrated.
action
ARLID cav_un_auth*0349961
name IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY 2017)
dates 20170914
mrcbC20-s 20170916
place Subotica
country RS
RIV BB
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2018
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274423
confidential S
mrcbC83 RIV/67985556:_____/17:00478195!RIV18-AV0-67985556 191975690 Doplnění UT WOS
mrcbC83 RIV/67985556:_____/17:00478195!RIV18-GA0-67985556 191965026 Doplnění UT WOS
mrcbC86 n.a. Proceedings Paper Automation Control Systems|Computer Science Artificial Intelligence|Computer Science Information Systems
mrcbC86 n.a. Proceedings Paper Automation Control Systems|Computer Science Artificial Intelligence|Computer Science Information Systems
mrcbC86 n.a. Proceedings Paper Automation Control Systems|Computer Science Artificial Intelligence|Computer Science Information Systems
arlyear 2017
mrcbU14 85040192839 SCOPUS
mrcbU24 PUBMED
mrcbU34 000427311500056 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0478194 Proceedings of IEEE 15th International Symposium on Intelligent Systems and Informatics SISY 2017 978-1-5386-3854-5 315 320 Piscataway IEEE 2017