bibtype C - Conference Paper (international conference)
ARLID 0478273
utime 20240111140946.2
mtime 20170921235959.9
SCOPUS 85041459923
WOS 000426986000233
DOI 10.23919/EUSIPCO.2017.8081389
title (primary) (eng) Orthogonally constrained independent component extraction: Blind MPDR beamforming
specification
page_count 6 s.
media_type C
serial
ARLID cav_un_epca*0478272
ISBN 978-0-9928626-7-1
title Proceedings of the 25th European Signal Processing Conference (EUSIPCO 2017)
page_num 1195-1199
publisher
place Atheny
name EURASIP
year 2017
keyword signals
keyword algorithms
keyword non-Gaussian distribution
author (primary)
ARLID cav_un_auth*0230113
name1 Koldovský
name2 Z.
country CZ
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0350114
name1 Kautský
name2 V.
country CZ
source
url http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0478273.pdf
source_size 132 kB
cas_special
project
ARLID cav_un_auth*0345929
project_id GA17-00902S
agency GA ČR
abstract (eng) We propose a novel technique for the extraction of one independent component from an instantaneous linear complex-valued mixture of signals. The mixing model is optimized\nin terms of the number of parameters that are necessary to simultaneously estimate one column of the mixing matrix and one row of the de-mixing matrix, which both correspond to the desired source. The desired source is assumed to have a non-Gaussian distribution, while the other sources are modeled, for simplicity, as Gaussian-distributed, although in applications the other sources can be arbitrary. We propose an algorithm that can be interpreted as a blind self-steering Minimum-Power Distortionless Response (MPDR) beamformer. The method is compared with the popular Natural Gradient algorithm for general Independent Component Analysis. Their performances are\ncomparable but the proposed method has a lower computational complexity, in examples, it is about four times faster.
action
ARLID cav_un_auth*0350050
name EUSIPCO 2017 - 25th European Signal Processing Conference
dates 20170828
mrcbC20-s 20170902
place Kos
country GR
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274425
confidential S
mrcbC83 RIV/67985556:_____/17:00478273!RIV18-AV0-67985556 191975691 Doplnění UT WOS, Scopus a DOI
mrcbC83 RIV/67985556:_____/17:00478273!RIV18-GA0-67985556 191965027 Doplnění UT WOS, Scopus a DOI
mrcbC86 n.a. Proceedings Paper Engineering Electrical Electronic|Telecommunications
arlyear 2017
mrcbU14 85041459923 SCOPUS
mrcbU24 PUBMED
mrcbU34 000426986000233 WOS
mrcbU56 132 kB
mrcbU63 cav_un_epca*0478272 Proceedings of the 25th European Signal Processing Conference (EUSIPCO 2017) 978-0-9928626-7-1 1195 1199 Atheny EURASIP 2017