bibtype J - Journal Article
ARLID 0478329
utime 20240103214535.1
mtime 20170921235959.9
SCOPUS 85032255391
WOS 000417547800009
DOI 10.1016/j.patcog.2017.09.004
title (primary) (eng) Rotation invariants of vector fields from orthogonal moments
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0257388
ISSN 0031-3203
title Pattern Recognition
volume_id 74
volume 1 (2018)
page_num 110-121
publisher
name Elsevier
keyword Vector field
keyword Total rotation
keyword Invariants
keyword Gaussian–Hermite moments
keyword Zernike moments
keyword Numerical stability
author (primary)
ARLID cav_un_auth*0236665
name1 Yang
name2 B.
country CN
author
ARLID cav_un_auth*0336802
name1 Kostková
name2 Jitka
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101203
name1 Suk
name2 Tomáš
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0349350
name1 Bujack
name2 R.
country US
source
url http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0478329.pdf
cas_special
project
ARLID cav_un_auth*0314467
project_id GA15-16928S
agency GA ČR
project
ARLID cav_un_auth*0360229
project_id GA18-07247S
agency GA ČR
abstract (eng) Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. To analyze them, special methods and algorithms must be originally developed or sub- stantially adapted from the traditional image processing area. In this paper, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but also on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.
RIV JD
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2019
num_of_auth 5
mrcbC52 4 A hod 4ah 20231122142648.7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274420
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS
confidential S
mrcbC86 1 Article Computer Science Artificial Intelligence|Engineering Electrical Electronic
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.402
mrcbT16-s 1.363
mrcbT16-B 84.24
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2018
mrcbTft \nSoubory v repozitáři: flusser-0478329.pdf
mrcbU14 85032255391 SCOPUS
mrcbU24 PUBMED
mrcbU34 000417547800009 WOS
mrcbU63 cav_un_epca*0257388 Pattern Recognition 0031-3203 1873-5142 Roč. 74 č. 1 2018 110 121 Elsevier