bibtype J - Journal Article
ARLID 0478480
utime 20240103214544.4
mtime 20170925235959.9
SCOPUS 85021440941
WOS 000411276100002
DOI 10.1515/snde-2016-0101
title (primary) (eng) Estimation of long memory in volatility using wavelets
specification
page_count 22 s.
media_type P
serial
ARLID cav_un_epca*0255788
ISSN 1081-1826
title Studies in Nonlinear Dynamics and Econometrics
volume_id 21
keyword long memory
keyword wavelets
keyword whittle
author (primary)
ARLID cav_un_auth*0344060
name1 Kraicová
name2 Lucie
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/E/barunik-0478480.pdf
cas_special
project
ARLID cav_un_auth*0292677
project_id GA13-32263S
agency GA ČR
project
ARLID cav_un_auth*0308905
project_id 612955
agency EC
abstract (eng) This work studies wavelet-based Whittle estimator of the fractionally integrated exponential gen- eralized autoregressive conditional heteroscedasticity (FIEGARCH) model often used for modeling long memory in volatility of financial assets. The newly proposed estimator approximates the spectral density using wavelet transform, which makes it more robust to certain types of irregularities in data. Based on an extensive Monte Carlo study, both behavior of the proposed estimator and its relative performance with respect to traditional estimators are assessed. In addition, we study properties of the estimators in presence of jumps, which brings interesting discussion. We find that wavelet-based estimator may become an attrac- tive robust and fast alternative to the traditional methods of estimation. In particular, a localized version of our estimator becomes attractive in small samples.
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2018
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0274595
mrcbC61 1
cooperation
ARLID cav_un_auth*0308308
name Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague
institution IES FSV UK
country CZ
confidential S
article_num 20160101
mrcbC86 3+4 Article Economics|Social Sciences Mathematical Methods
mrcbC86 3+4 Article Economics|Social Sciences Mathematical Methods
mrcbC86 3+4 Article Economics|Social Sciences Mathematical Methods
mrcbT16-e ECONOMICS|SOCIALSCIENCESMATHEMATICALMETHODS
mrcbT16-j 0.302
mrcbT16-s 0.668
mrcbT16-B 18.997
mrcbT16-D Q4
mrcbT16-E Q2
arlyear 2017
mrcbU14 85021440941 SCOPUS
mrcbU24 PUBMED
mrcbU34 000411276100002 WOS
mrcbU63 cav_un_epca*0255788 Studies in Nonlinear Dynamics and Econometrics 1081-1826 1558-3708 Roč. 21 č. 3 2017