bibtype M - Monography Chapter
ARLID 0479581
utime 20240103214711.8
mtime 20171016235959.9
SCOPUS 85044017216
WOS 000449616400017
DOI 10.1007/978-3-319-55556-0_15
title (primary) (eng) Multi-Penalty Regularization for Detecting Relevant Variables
specification
book_pages 948
page_count 27 s.
media_type P
serial
ARLID cav_un_epca*0479580
ISBN 978-3-319-55555-3
title Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science
page_num 889-916
publisher
place Cham
name Springer
year 2017
editor
name1 Le Gia
name2 Q. T.
editor
name1 Mayeli
name2 A.
editor
name1 Mhaskar
name2 H.
editor
name1 Zhou
name2 D.-X.
keyword detecting relevant variables
keyword multi-penalty regularization
keyword behavior of discrepancies
author (primary)
ARLID cav_un_auth*0247122
name1 Hlaváčková-Schindler
name2 Kateřina
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0333744
name1 Naumova
name2 V.
country NO
author
ARLID cav_un_auth*0353135
name1 Pereverzyev
name2 S. Jr.
country AT
source
url http://library.utia.cas.cz/separaty/2017/AS/hlaváčková-schindler-0479581.pdf
cas_special
abstract (eng) In this paper, we propose a new method for detecting relevant variables from a priori given high-dimensional data under the assumption that input-output relation is described by a nonlinear function depending on a few variables. The method is based on the inspection of the behavior of discrepancies of a multi-penalty regularization with a component-wise penalization for small and large values of regularization parameters. We provide a justification of the proposed method under a certain condition on sampling operators. The effectiveness of the method is demonstrated in an example with simulated data and in the reconstruction of a gene regulatory network. In the latter example, the obtained results provide clear evidence of the competitiveness of the proposed method with respect to the state-of-the-art approaches.
RIV BD
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2018
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0276739
confidential S
mrcbC83 RIV/67985556:_____/17:00479581!RIV18-AV0-67985556 191975711 Doplnění UT WOS a Scopus
mrcbC86 3+4 Article Mathematics Applied
mrcbC86 3+4 Article Mathematics Applied
mrcbC86 3+4 Article Mathematics Applied
arlyear 2017
mrcbU14 85044017216 SCOPUS
mrcbU24 PUBMED
mrcbU34 000449616400017 WOS
mrcbU63 cav_un_epca*0479580 Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science 978-3-319-55555-3 889 916 Cham Springer 2017 Applied and Numerical Harmonic Analysis
mrcbU67 Pesenson I. 340
mrcbU67 340 Le Gia Q. T.
mrcbU67 340 Mayeli A.
mrcbU67 340 Mhaskar H.
mrcbU67 340 Zhou D.-X.