bibtype J - Journal Article
ARLID 0479748
utime 20240103214725.8
mtime 20171017235959.9
SCOPUS 85029597416
WOS 000413608100029
DOI 10.1016/j.sigpro.2017.08.027
title (primary) (eng) Rotation invariants from Gaussian-Hermite moments of color images
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0255076
ISSN 0165-1684
title Signal Processing
volume_id 143
volume 1 (2018)
page_num 282-291
publisher
name Elsevier
keyword Color images
keyword Object recognition
keyword Rotation invariants
keyword Gaussian–Hermite moments
keyword Joint invariants
author (primary)
ARLID cav_un_auth*0236665
name1 Yang
name2 B.
country CN
author
ARLID cav_un_auth*0101203
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Suk
name2 Tomáš
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Flusser
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0351712
name1 Shi
name2 Z.
country CN
author
ARLID cav_un_auth*0351713
name1 Chen
name2 X.
country CN
source
url http://library.utia.cas.cz/separaty/2017/ZOI/suk-0479748.pdf
cas_special
project
ARLID cav_un_auth*0314467
project_id GA15-16928S
agency GA ČR
abstract (eng) The topic of the paper is recognition of objects and patterns in color images regardless of their position, orientation, and scale. Gaussian–Hermite moment invariants designed especially for color images are in- troduced in this paper. We extend the existing invariants for graylevel images and show that in the case of color images there exist additional independent invariants, which can be constructed as joint invari- ants from cross-channel moments and/or from new non-trivial low-order moments. The experiments on real data confirmed that the new invariants improve the recognition rate.
RIV JD
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2019
num_of_auth 5
mrcbC52 4 A hod 4ah 20231122142728.3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0276741
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS
confidential S
mrcbC86 2 Article Engineering Electrical Electronic
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.821
mrcbT16-s 0.905
mrcbT16-B 58.44
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2018
mrcbTft \nSoubory v repozitáři: suk-0479748.pdf
mrcbU14 85029597416 SCOPUS
mrcbU24 PUBMED
mrcbU34 000413608100029 WOS
mrcbU63 cav_un_epca*0255076 Signal Processing 0165-1684 1872-7557 Roč. 143 č. 1 2018 282 291 Elsevier