bibtype C - Conference Paper (international conference)
ARLID 0480970
utime 20240111140949.6
mtime 20171107235959.9
SCOPUS 85038564492
WOS 000418371404098
DOI 10.1109/CVPR.2017.514
title (primary) (eng) The World of Fast Moving Objects
specification
page_count 9 s.
media_type E
serial
ARLID cav_un_epca*0480969
ISBN 978-1-5386-0457-1
title 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
page_num 5203-5211
publisher
place Pisacataway
name IEEE
year 2017
keyword tracking
keyword blind deconvolution
keyword deblurring
keyword temporal superresolution
author (primary)
ARLID cav_un_auth*0352947
name1 Rozumnyi
name2 D.
country CZ
author
ARLID cav_un_auth*0293863
name1 Kotera
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0209819
name1 Novotný
name2 L.
country CZ
author
ARLID cav_un_auth*0075799
name1 Matas
name2 J.
country CZ
source
source_type pdf
url http://library.utia.cas.cz/separaty/2017/ZOI/sroubek-0480970.pdf
source_size 5.2MB
cas_special
project
ARLID cav_un_auth*0338628
project_id GA16-13830S
agency GA ČR
country CZ
abstract (eng) The notion of a Fast Moving Object (FMO), i.e. an object that moves over a distance exceeding its size within the exposure time, is introduced. FMOs may, and typically do, rotate with high angular speed. FMOs are very common in sports videos, but are not rare elsewhere. In a single frame, such objects are often barely visible and appear as semi-transparent streaks. A method for the detection and tracking of FMOs is proposed. The method consists of three distinct algorithms, which form an efficient localization pipeline that operates successfully in a broad range of conditions. We show that it is possible to recover the appearance of the object and its axis of rotation, despite its blurred appearance. The proposed method is evaluated on a new annotated dataset. The results show that existing trackers are inadequate for the problem of FMO localization and a new approach is required. Two applications of localization, temporal superresolution and highlighting, are presented.
action
ARLID cav_un_auth*0352949
name The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
dates 20170721
mrcbC20-s 20170726
place Honolulu
country US
RIV JD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2018
num_of_auth 5
mrcbC52 4 A hod 4ah 20231122142802.5
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0276746
cooperation
ARLID cav_un_auth*0331345
name FEL Czech Technical University
institution FET CTU
country CZ
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Engineering Electrical Electronic
arlyear 2017
mrcbTft \nSoubory v repozitáři: sroubek-0480970.pdf
mrcbU14 85038564492 SCOPUS
mrcbU24 PUBMED
mrcbU34 000418371404098 WOS
mrcbU56 pdf 5.2MB
mrcbU63 cav_un_epca*0480969 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 978-1-5386-0457-1 5203 5211 Pisacataway IEEE 2017