bibtype J - Journal Article
ARLID 0481220
utime 20240111140949.9
mtime 20171111235959.9
SCOPUS 85033590254
WOS 000425566000002
DOI 10.1016/j.trc.2017.11.001
title (primary) (eng) An online estimation of driving style using data-dependent pointer model
specification
page_count 14 s.
serial
ARLID cav_un_epca*0255260
ISSN 0968-090X
title Transportation Research. Part C: Emerging Technologies
volume_id 86
volume 1 (2018)
page_num 23-36
publisher
name Elsevier
keyword driving style
keyword fuel consumption
keyword mixture-based clustering
keyword data-dependent pointer
keyword recursive mixture estimation
author (primary)
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
institution UTIA-B
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
institution UTIA-B
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2017/ZS/suzdaleva-0481220.pdf
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) The paper focuses on a task of stochastic modeling the driving style and its online estimation while driving. The driving style is modeled by means of a mixture model with normal and categorical components as well as a data-dependent pointer. The main contributions of the presented approach are: (i) the online estimation of the driving style while driving, taking into account data up to the current time instant, (ii) the joint model for continuous and discrete data measured on a vehicle, (iii) the data-dependent model of the driving style conditioned by the values of fuel consumption, (iv) the use of the model both for detection of clusters according to the driving style and prediction of the fuel consumption along with other variables, and (v) the universal modeling with the help of mixtures, which allows us to use different combinations of components and pointer models as well as to specify the initialization approach suitable for the considered problem.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2019
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122142807.9
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0277004
mrcbC64 1 Department of Signal Processing UTIA-B 10103 STATISTICS & PROBABILITY
confidential S
mrcbC86 1 Article Transportation Science Technology
mrcbT16-e TRANSPORTATIONSCIENCETECHNOLOGY
mrcbT16-j 1.13
mrcbT16-s 2.611
mrcbT16-B 81.395
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2018
mrcbTft \nSoubory v repozitáři: suzdaleva-0481220.pdf
mrcbU14 85033590254 SCOPUS
mrcbU24 PUBMED
mrcbU34 000425566000002 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0255260 Transportation Research. Part C: Emerging Technologies 0968-090X 1879-2359 Roč. 86 č. 1 2018 23 36 Elsevier