bibtype |
J -
Journal Article
|
ARLID |
0481260 |
utime |
20240103214928.4 |
mtime |
20171113235959.9 |
SCOPUS |
84951199230 |
WOS |
000374614900006 |
DOI |
10.1016/j.ijar.2015.10.003 |
title
(primary) (eng) |
Causal compositional models in valuation-based systems with examples in specific theories |
specification |
page_count |
18 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0256774 |
ISSN |
0888-613X |
title
|
International Journal of Approximate Reasoning |
volume_id |
72 |
volume |
1 (2016) |
page_num |
95-112 |
publisher |
|
|
keyword |
operator of composition |
keyword |
causality |
keyword |
belief function |
author
(primary) |
ARLID |
cav_un_auth*0101118 |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
full_dept |
Department of Decision Making Theory |
share |
50 |
name1 |
Jiroušek |
name2 |
Radim |
institution |
UTIA-B |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0275452 |
name1 |
Shenoy |
name2 |
P. P. |
country |
US |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0353428 |
project_id |
GA15-00215S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
The paper shows that Pearl’s causal networks can be described using causal compositional models (CCMs) in the valuation-based systems (VBS) framework. One major advantage of using the VBS framework is that as VBS is a generalization of several uncertainty theories (e.g., probability theory, a version of possibility theory where combination is the product t-norm, Spohn’s epistemic belief theory, and Dempster–Shafer belief function theory), CCMs, initially described in probability theory, are now described in all uncertainty calculi that fit in the VBS framework. We describe conditioning and interventions in CCMs. |
RIV |
AH |
FORD0 |
50000 |
FORD1 |
50200 |
FORD2 |
50201 |
reportyear |
2018 |
num_of_auth |
2 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0277012 |
cooperation |
ARLID |
cav_un_auth*0353270 |
name |
School of Business, University of Kansas, Lawrence |
country |
US |
|
confidential |
S |
mrcbC86 |
3+4 Article|Proceedings Paper Computer Science Artificial Intelligence |
mrcbT16-e |
COMPUTERSCIENCEARTIFICIALINTELLIGENCE |
mrcbT16-j |
0.785 |
mrcbT16-s |
1.275 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
65.62 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q1 |
arlyear |
2016 |
mrcbU14 |
84951199230 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000374614900006 WOS |
mrcbU63 |
cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 72 č. 1 2016 95 112 Elsevier |
|