bibtype J - Journal Article
ARLID 0481260
utime 20240103214928.4
mtime 20171113235959.9
SCOPUS 84951199230
WOS 000374614900006
DOI 10.1016/j.ijar.2015.10.003
title (primary) (eng) Causal compositional models in valuation-based systems with examples in specific theories
specification
page_count 18 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 72
volume 1 (2016)
page_num 95-112
publisher
name Elsevier
keyword operator of composition
keyword causality
keyword belief function
author (primary)
ARLID cav_un_auth*0101118
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
share 50
name1 Jiroušek
name2 Radim
institution UTIA-B
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0275452
name1 Shenoy
name2 P. P.
country US
source
url http://library.utia.cas.cz/separaty/2017/MTR/jirousek-0481260.pdf
cas_special
project
ARLID cav_un_auth*0353428
project_id GA15-00215S
agency GA ČR
country CZ
abstract (eng) The paper shows that Pearl’s causal networks can be described using causal compositional models (CCMs) in the valuation-based systems (VBS) framework. One major advantage of using the VBS framework is that as VBS is a generalization of several uncertainty theories (e.g., probability theory, a version of possibility theory where combination is the product t-norm, Spohn’s epistemic belief theory, and Dempster–Shafer belief function theory), CCMs, initially described in probability theory, are now described in all uncertainty calculi that fit in the VBS framework. We describe conditioning and interventions in CCMs.
RIV AH
FORD0 50000
FORD1 50200
FORD2 50201
reportyear 2018
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0277012
cooperation
ARLID cav_un_auth*0353270
name School of Business, University of Kansas, Lawrence
country US
confidential S
mrcbC86 3+4 Article|Proceedings Paper Computer Science Artificial Intelligence
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.785
mrcbT16-s 1.275
mrcbT16-4 Q1
mrcbT16-B 65.62
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2016
mrcbU14 84951199230 SCOPUS
mrcbU24 PUBMED
mrcbU34 000374614900006 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 72 č. 1 2016 95 112 Elsevier