bibtype J - Journal Article
ARLID 0481321
utime 20240103214933.0
mtime 20171114235959.9
WOS 000414585000001
SCOPUS 85034257197
DOI 10.1137/16M1060947
title (primary) (eng) Weak Lower Semicontinuity of Integral Functionals and Applications
specification
page_count 64 s.
media_type P
serial
ARLID cav_un_epca*0255074
ISSN 0036-1445
title SIAM Review
volume_id 59
volume 4 (2017)
page_num 703-766
keyword calculus of variations
keyword weak lower semi-continuity
author (primary)
ARLID cav_un_auth*0307508
name1 Benešová
name2 B.
country DE
author
ARLID cav_un_auth*0101142
name1 Kružík
name2 Martin
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0481321.pdf
cas_special
project
ARLID cav_un_auth*0304434
project_id GA14-15264S
agency GA ČR
project
ARLID cav_un_auth*0331681
project_id GF16-34894L
agency GA ČR
country CZ
project
ARLID cav_un_auth*0348999
project_id DAAD-16-14
agency GA AV ČR
country CZ
abstract (eng) Minimization is a recurring theme in many mathematical disciplines ranging from pure\nto applied. Of particular importance is the minimization of integral functionals, which is\nstudied within the calculus of variations. Proofs of the existence of minimizers usually rely\non a fine property of the functional called weak lower semicontinuity. While early stud-\nies of lower semicontinuity go back to the beginning of the 20th century, the milestones\nof the modern theory were established by C. B. Morrey, Jr. [Pacific J. Math., 2 (1952),\npp. 25–53] in 1952 and N. G. Meyers [Trans. Amer. Math. Soc., 119 (1965), pp. 125–149]\nin 1965. We recapitulate the development of this topic from these papers onwards. Spe-\ncial attention is paid to signed integrands and to applications in continuum mechanics\nof solids. In particular, we review the concept of polyconvexity and special properties of\n(sub-)determinants with respect to weak lower semicontinuity. In addition, we empha-\nsize some recent progress in lower semicontinuity of functionals along sequences satisfying\ndifferential and algebraic constraints that can be used in elasticity to ensure injectivity\nand orientation-preservation of deformations. Finally, we outline generalizations of these\nresults to more general first-order partial differential operators and make some suggestions\nfor further reading
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2018
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122142810.8
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0277002
mrcbC64 1 Department of Decision Making Theory UTIA-B 10102 MATHEMATICS, APPLIED
confidential S
mrcbC86 1* Article Mathematics Applied
mrcbC86 1* Article Mathematics Applied
mrcbC86 1* Article Mathematics Applied
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 3.736
mrcbT16-s 2.273
mrcbT16-B 99.732
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2017
mrcbTft \nSoubory v repozitáři: kruzik-0481321.pdf
mrcbU14 85034257197 SCOPUS
mrcbU24 PUBMED
mrcbU34 000414585000001 WOS
mrcbU63 cav_un_epca*0255074 SIAM Review 0036-1445 1095-7200 Roč. 59 č. 4 2017 703 766