bibtype J - Journal Article
ARLID 0481470
utime 20240103214945.2
mtime 20171116235959.9
SCOPUS 85031808792
WOS 000417659000004
DOI 10.1016/j.ijar.2017.10.010
title (primary) (eng) A new definition of entropy of belief functions in the Dempster-Shafer theory
specification
page_count 17 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 92
volume 1 (2018)
page_num 49-65
publisher
name Elsevier
keyword Dempster-Shafer theory
keyword Dempster’s rule of combination
keyword Plausibility transform
author (primary)
ARLID cav_un_auth*0101118
full_dept Department of Decision Making Theory
share 50
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0275452
name1 Shenoy
name2 P. P.
country US
source
url http://library.utia.cas.cz/separaty/2017/MTR/jirousek-0481470.pdf
cas_special
project
ARLID cav_un_auth*0353269
project_id GA15-00215S
agency GA ČR
country CZ
abstract (eng) A new definition of entropy of basic probability assignments in the Dempster–Shafer theory of belief functions is proposed. We state a list of six desired properties of entropy for DS belief functions theory, four of which are motivated by Shannon’s definition of entropy of probability functions, and the remaining two are requirements that adapt this measure to the philosophy of the DS theory. The new definition has two components. The first component is Shannon’s entropy of an equivalent probability mass function obtained using the plausibility transform, which constitutes the conflict measure of entropy. The second component is Dubois-Prade’s definition of entropy of basic probability assignments in the DS theory, which constitutes the non-specificity measure of entropy.
RIV AH
FORD0 50000
FORD1 50200
FORD2 50201
reportyear 2019
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0277040
cooperation
ARLID cav_un_auth*0353454
name School of Business, University of Kansas,
country US
confidential S
mrcbC86 1* Article Computer Science Artificial Intelligence
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.603
mrcbT16-s 0.606
mrcbT16-B 43.815
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2018
mrcbU14 85031808792 SCOPUS
mrcbU24 PUBMED
mrcbU34 000417659000004 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 92 č. 1 2018 49 65 Elsevier