bibtype K - Conference Paper (Czech conference)
ARLID 0481488
utime 20240103214946.0
mtime 20171116235959.9
WOS 000427151400050
title (primary) (eng) Avoiding overfitting of models: an application to research data on the Internet videos
specification
page_count 6 s.
media_type E
serial
ARLID cav_un_epca*0477966
ISBN 978-80-7435-678-0
title Proceedings of the 35th International Conference Mathematical Methods in Economics (MME 2017)
page_num 289-294
publisher
place Hradec Králové
name University of Hradec Králové
year 2017
keyword data-based learning
keyword probabilistic models
keyword information theory
keyword MDL principle
keyword lossless encoding
author (primary)
ARLID cav_un_auth*0101118
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
share 75
name1 Jiroušek
name2 Radim
institution UTIA-B
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0353476
share 25
name1 Krejčová
name2 I.
country CZ
source
url http://library.utia.cas.cz/separaty/2017/MTR/jirousek-0481488.pdf
cas_special
project
ARLID cav_un_auth*0353428
project_id GA15-00215S
agency GA ČR
country CZ
abstract (eng) The problem of overfitting is studied from the perspective of information theory. In this context, data-based model learning can be viewed as a transformation process, a process transforming the information contained in data into the information represented by a model. The overfitting of a model often occurs when one considers an unnecessarily complex model, which usually means that the considered model contains more information than the original data. Thus, using one of the basic laws of information theory saying that any transformation cannot increase the amount of information, we get the basic restriction laid on models constructed from data: A model is acceptable if it does not contain more information than the input data file.
action
ARLID cav_un_auth*0346896
name MME 2017. International Conference Mathematical Methods in Economics /35./
dates 20170913
mrcbC20-s 20170915
place Hradec Králové
country CZ
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2018
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0277045
cooperation
ARLID cav_un_auth*0353468
name Výsoká škola ekonomická, Fakulta managementu
institution FM VŠE
country CZ
confidential S
mrcbC86 3+4 Proceedings Paper Economics|Operations Research Management Science|Mathematics Interdisciplinary Applications|Social Sciences Mathematical Methods
mrcbC86 3+4 Proceedings Paper Economics|Operations Research Management Science|Mathematics Interdisciplinary Applications|Social Sciences Mathematical Methods
mrcbC86 3+4 Proceedings Paper Economics|Operations Research Management Science|Mathematics Interdisciplinary Applications|Social Sciences Mathematical Methods
arlyear 2017
mrcbU34 000427151400050 WOS
mrcbU63 cav_un_epca*0477966 Proceedings of the 35th International Conference Mathematical Methods in Economics (MME 2017) 978-80-7435-678-0 289 294 Hradec Králové University of Hradec Králové 2017