bibtype C - Conference Paper (international conference)
ARLID 0482566
utime 20240111140952.6
mtime 20171205235959.9
SCOPUS 85047411746
WOS 000426897300015
DOI 10.1109/ICIIBMS.2017.8279700
title (primary) (eng) Recursive Clustering Hematological Data Using Mixture of Exponential Components
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0482565
ISBN 978-1-5090-6665-0
title Proceedings of International Conference on Intelligent Informatics and BioMedical Sciences ICIIBMS 2017
page_num 63-70
publisher
place Piscataway
name IEEE
year 2017
keyword mixture-based clustering
keyword recursive mixture estimation
keyword exponential components
author (primary)
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0349960
name1 Petrouš
name2 Matej
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2017/ZS/suzdaleva-0482566.pdf
cas_special
project
ARLID cav_un_auth*0321440
project_id GA15-03564S
agency GA ČR
abstract (eng) The paper deals with the mixture-based clustering of anonymized data of patients with leukemia. The presented clustering algorithm is based on the recursive Bayesian mixture estimation for the case of exponential components and the data-dependent dynamic pointer model. The main contribution of the paper is the online performance of clustering, which allows us to actualize the statistics of components and the pointer model with each new measurement. Results of the application of the algorithm to the clustering of hematological data are demonstrated and compared with theoretical counterparts.\n
action
ARLID cav_un_auth*0354635
name International Conference on Intelligent Informatics and BioMedical Sciences ICIIBMS 2017
dates 20171124
mrcbC20-s 20171126
place Okinawa
country JP
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0278141
confidential S
mrcbC83 RIV/67985556:_____/17:00482566!RIV18-AV0-67985556 191975727 Doplnění UT WOS, Scopus a DOI
mrcbC83 RIV/67985556:_____/17:00482566!RIV18-GA0-67985556 191965055 Doplnění UT WOS, Scopus a DOI
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Computer Science Information Systems|Medical Informatics
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Computer Science Information Systems|Medical Informatics
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Computer Science Information Systems|Medical Informatics
arlyear 2017
mrcbU14 85047411746 SCOPUS
mrcbU24 PUBMED
mrcbU34 000426897300015 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0482565 Proceedings of International Conference on Intelligent Informatics and BioMedical Sciences ICIIBMS 2017 978-1-5090-6665-0 63 70 Piscataway IEEE 2017