bibtype J - Journal Article
ARLID 0483250
utime 20240103215158.0
mtime 20171214235959.9
SCOPUS 85038001582
WOS 000424628300007
DOI 10.1016/j.patrec.2017.12.013
title (primary) (eng) Rotation of 2D orthogonal polynomials
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0257389
ISSN 0167-8655
title Pattern Recognition Letters
volume_id 102
volume 1 (2018)
page_num 44-49
publisher
name Elsevier
keyword Rotation invariants
keyword Orthogonal polynomials
keyword Recurrent relation
keyword Hermite-like polynomials
keyword Hermite moments
author (primary)
ARLID cav_un_auth*0236665
name1 Yang
name2 B.
country CN
author
ARLID cav_un_auth*0101087
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Flusser
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0355333
name1 Kautský
name2 J.
country AU
source
url http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0483250.pdf
cas_special
project
ARLID cav_un_auth*0314467
project_id GA15-16928S
agency GA ČR
abstract (eng) Orientation-independent object recognition mostly relies on rotation invariants. Invariants from moments orthogonal on a square have favorable numerical properties but they are difficult to construct. The paper presents sufficient and necessary conditions, that must be fulfilled by 2D separable orthogonal polynomi- als, for being transformed under rotation in the same way as are the monomials. If these conditions have been met, the rotation property propagates from polynomials to moments and allows a straightforward derivation of rotation invariants. We show that only orthogonal polynomials belonging to a specific class exhibit this property. We call them Hermite-like polynomials.
RIV JD
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2019
num_of_auth 3
mrcbC52 4 A hod 4ah 20231122142906.5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0278695
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS
confidential S
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.731
mrcbT16-s 0.662
mrcbT16-B 52.042
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2018
mrcbTft \nSoubory v repozitáři: flusser-0483250.pdf
mrcbU14 85038001582 SCOPUS
mrcbU24 PUBMED
mrcbU34 000424628300007 WOS
mrcbU63 cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 102 č. 1 2018 44 49 Elsevier