| bibtype |
J -
Journal Article
|
| ARLID |
0483250 |
| utime |
20240103215158.0 |
| mtime |
20171214235959.9 |
| SCOPUS |
85038001582 |
| WOS |
000424628300007 |
| DOI |
10.1016/j.patrec.2017.12.013 |
| title
(primary) (eng) |
Rotation of 2D orthogonal polynomials |
| specification |
| page_count |
6 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0257389 |
| ISSN |
0167-8655 |
| title
|
Pattern Recognition Letters |
| volume_id |
102 |
| volume |
1 (2018) |
| page_num |
44-49 |
| publisher |
|
|
| keyword |
Rotation invariants |
| keyword |
Orthogonal polynomials |
| keyword |
Recurrent relation |
| keyword |
Hermite-like polynomials |
| keyword |
Hermite moments |
| author
(primary) |
| ARLID |
cav_un_auth*0236665 |
| name1 |
Yang |
| name2 |
B. |
| country |
CN |
|
| author
|
| ARLID |
cav_un_auth*0101087 |
| full_dept (cz) |
Zpracování obrazové informace |
| full_dept |
Department of Image Processing |
| department (cz) |
ZOI |
| department |
ZOI |
| full_dept |
Department of Image Processing |
| name1 |
Flusser |
| name2 |
Jan |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0355333 |
| name1 |
Kautský |
| name2 |
J. |
| country |
AU |
|
| source |
|
| cas_special |
| project |
| ARLID |
cav_un_auth*0314467 |
| project_id |
GA15-16928S |
| agency |
GA ČR |
|
| abstract
(eng) |
Orientation-independent object recognition mostly relies on rotation invariants. Invariants from moments orthogonal on a square have favorable numerical properties but they are difficult to construct. The paper presents sufficient and necessary conditions, that must be fulfilled by 2D separable orthogonal polynomi- als, for being transformed under rotation in the same way as are the monomials. If these conditions have been met, the rotation property propagates from polynomials to moments and allows a straightforward derivation of rotation invariants. We show that only orthogonal polynomials belonging to a specific class exhibit this property. We call them Hermite-like polynomials. |
| RIV |
JD |
| FORD0 |
20000 |
| FORD1 |
20200 |
| FORD2 |
20206 |
| reportyear |
2019 |
| num_of_auth |
3 |
| mrcbC52 |
4 A hod 4ah 20231122142906.5 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0278695 |
| mrcbC64 |
1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, THEORY & METHODS |
| confidential |
S |
| mrcbC86 |
3+4 Article Computer Science Artificial Intelligence |
| mrcbT16-e |
COMPUTERSCIENCE.ARTIFICIALINTELLIGENCE |
| mrcbT16-f |
2.822 |
| mrcbT16-g |
0.638 |
| mrcbT16-h |
8.5 |
| mrcbT16-i |
0.01309 |
| mrcbT16-j |
0.731 |
| mrcbT16-k |
12661 |
| mrcbT16-s |
0.662 |
| mrcbT16-5 |
2.656 |
| mrcbT16-6 |
271 |
| mrcbT16-7 |
Q2 |
| mrcbT16-B |
52.042 |
| mrcbT16-C |
63.1 |
| mrcbT16-D |
Q2 |
| mrcbT16-E |
Q2 |
| mrcbT16-M |
0.77 |
| mrcbT16-N |
Q2 |
| mrcbT16-P |
63.06 |
| arlyear |
2018 |
| mrcbTft |
\nSoubory v repozitáři: flusser-0483250.pdf |
| mrcbU14 |
85038001582 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000424628300007 WOS |
| mrcbU63 |
cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 102 č. 1 2018 44 49 Elsevier |
|