bibtype J - Journal Article
ARLID 0483574
utime 20240103215222.0
mtime 20171220235959.9
SCOPUS 85041107421
WOS 000430013600010
DOI 10.1002/zamm.201700105
title (primary) (eng) Error identities for variational problems with obstacles
specification
page_count 24 s.
media_type P
serial
ARLID cav_un_epca*0257715
ISSN 0044-2267
title ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
volume_id 98
volume 4 (2018)
page_num 635-658
publisher
name Wiley
keyword variational problems with obstacles
keyword coincidence set
keyword convex functionals
keyword error identities
author (primary)
ARLID cav_un_auth*0316845
name1 Repin
name2 S.
country RU
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/MTR/valdman-0483574.pdf
cas_special
project
ARLID cav_un_auth*0331681
project_id GF16-34894L
agency GA ČR
country CZ
project
ARLID cav_un_auth*0347023
project_id GA17-04301S
agency GA ČR
project
ARLID cav_un_auth*0342514
project_id 7AMB16AT015
agency GA MŠk
country CZ
abstract (eng) The paper is devoted to analysis of a class of nonlinear free boundary problems that are usually solved by variational methods based on primal, dual or primal-dual variational settings. We deduce and investigate special relations (error identities). They show that a certain nonlinear measure of the distance to the exact solution (specific for each problem) is equivalent to the respective duality gap, whose minimization is the keystone of all variational numerical methods. Therefore, the identity actually sets the measure that contains maximal quantitative information on the quality of a numerical solution available through these methods.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2019
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0278827
confidential S
mrcbC86 3+4 Article Mathematics Applied|Mechanics
mrcbT16-e MATHEMATICSAPPLIED|MECHANICS
mrcbT16-j 0.469
mrcbT16-s 0.590
mrcbT16-B 29.762
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2018
mrcbU14 85041107421 SCOPUS
mrcbU24 PUBMED
mrcbU34 000430013600010 WOS
mrcbU63 cav_un_epca*0257715 ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik 0044-2267 1521-4001 Roč. 98 č. 4 2018 635 658 Wiley