bibtype C - Conference Paper (international conference)
ARLID 0483831
utime 20240103215240.2
mtime 20180102235959.9
SCOPUS 85055486182
DOI 10.1007/978-3-030-01713-2_20
title (primary) (eng) Lazy Fully Probabilistic Design: Application Potential
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0483465
ISBN 978-3-030-01712-5
title Multi-Agent Systems and Agreement Technologies
page_num 281-291
publisher
place Cham
name Springer
year 2018
editor
name1 Belardinelli
name2 F.
keyword lazy learning
keyword fully probabilistic design
keyword decision making
keyword linear quadratic Gaussian control
author (primary)
ARLID cav_un_auth*0101092
name1 Guy
name2 Tatiana Valentine
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0355639
full_dept Department of Adaptive Systems
name1 Fakhimi Derakhshan
name2 Siavash
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0355640
name1 Štěch
name2 Jakub
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/AS/guy-0483831.pdf
cas_special
project
ARLID cav_un_auth*0331019
project_id GA16-09848S
agency GA ČR
abstract (eng) The article addresses a lazy learning approach to fully probabilistic decision making when a decision maker (human or arti_cial) uses incomplete knowledge of environment and faces high computational limitations. The resulting lazy Fully Probabilistic Design (FPD) selects a decision strategy that moves a probabilistic description of the closed decision loop to a pre-speci_ed ideal description. The lazy FPD uses currently observed data to _nd past closed-loop similar to the actual ideal model. The optimal decision rule of the closest model is then used in the current step. The e_ectiveness and capability of the proposed approach are manifested through example.
action
ARLID cav_un_auth*0355398
name European Conference on Multi-Agent Systems (EUMAS) 2017 /15./
dates 20171214
mrcbC20-s 20171215
place Évry
country FR
RIV BC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2019
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0278988
confidential S
arlyear 2018
mrcbU14 85055486182 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0483465 Multi-Agent Systems and Agreement Technologies Springer 2018 Cham 281 291 978-3-030-01712-5 Lecture Notes in Artificial Intelligence 10767
mrcbU67 340 Belardinelli F.