bibtype C - Conference Paper (international conference)
ARLID 0484058
utime 20240103215257.4
mtime 20180104235959.9
WOS 000418391500021
title (primary) (eng) A machine learning method for incomplete and imbalanced medical data
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0484057
ISBN 978-80-7464-932-5
title Proceedings of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, CZECH-JAPAN SEMINAR 2017
page_num 188-195
publisher
place Ostrava
name University of Ostrava
year 2017
editor
name1 Novák
name2 Vilém
editor
name1 Inuiguchi
name2 Masahiro
editor
name1 Štěpnička
name2 Martin
keyword Machine Learning
keyword Data Analysis
keyword Bayesian networks
keyword Imbalanced Data
keyword Acute Myocardial Infarction
author (primary)
ARLID cav_un_auth*0355858
share 70
name1 Salman
name2 I.
country SY
author
ARLID cav_un_auth*0101228
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
share 30
name1 Vomlel
name2 Jiří
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/MTR/vomlel-0484058.pdf
cas_special
project
ARLID cav_un_auth*0332303
project_id GA16-12010S
agency GA ČR
country CZ
abstract (eng) Our research reported in this paper is twofold. In the first part of the paper we use\nstandard statistical methods to analyze medical records of patients suffering myocardial\ninfarction from the third world Syria and a developed country - the Czech Republic.\nOne of our goals is to find whether there are statistically significant differences between\nthe two countries. In the second part of the paper we present an idea how to deal with\nincomplete and imbalanced data for tree-augmented naive Bayesian (TAN). All results\npresented in this paper are based on a real data about 603 patients from a hospital in\nthe Czech Republic and about 184 patients from two hospitals in Syria.
action
ARLID cav_un_auth*0355859
name Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /20./
dates 20170917
mrcbC20-s 20170920
place Pardubice
country CZ
RIV JD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2018
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0279537
confidential S
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Mathematics Applied
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Mathematics Applied
mrcbC86 3+4 Proceedings Paper Computer Science Artificial Intelligence|Mathematics Applied
arlyear 2017
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 000418391500021 WOS
mrcbU63 cav_un_epca*0484057 Proceedings of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, CZECH-JAPAN SEMINAR 2017 University of Ostrava 2017 Ostrava 188 195 978-80-7464-932-5
mrcbU67 340 Novák Vilém
mrcbU67 340 Inuiguchi Masahiro
mrcbU67 340 Štěpnička Martin