bibtype J - Journal Article
ARLID 0484922
utime 20240103215400.7
mtime 20180117235959.9
SCOPUS 85037378516
WOS 000450596100001
DOI 10.1007/s11225-017-9771-7
title (primary) (eng) Extension Properties and Subdirect Representation in Abstract Algebraic Logic
specification
page_count 31 s.
media_type P
serial
ARLID cav_un_epca*0292190
ISSN 0039-3215
title Studia Logica
volume_id 106
volume 6 (2018)
page_num 1065-1095
publisher
name Springer
keyword Abstract algebraic logic
keyword Infinitary logics
keyword Natural extensions
keyword Natural expansions
keyword Semilinear logics
keyword Subdirect representation
author (primary)
ARLID cav_un_auth*0341114
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
share 50
name1 Lávička
name2 Tomáš
institution UTIA-B
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0293476
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
share 50
name1 Noguera
name2 Carles
institution UTIA-B
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2018/MTR/lavicka-0484922.pdf
cas_special
project
ARLID cav_un_auth*0349495
project_id GA17-04630S
agency GA ČR
abstract (eng) This paper continues the investigation, started in Lávička and Noguera (Stud Log 105(3): 521–551, 2017), of infinitary propositional logics from the perspective of their algebraic completeness and filter extension properties in abstract algebraic logic. If follows from the Lindenbaum Lemma used in standard proofs of algebraic completeness that, in every finitary logic, (completely) intersection-prime theories form a basis of the closure system of all theories. In this article we consider the open problem of whether these properties can be transferred to lattices of filters over arbitrary algebras of the logic. We show that in general the answer is negative, obtaining a richer hierarchy of pairwise different classes of infinitary logics that we separate with natural examples. As by-products we obtain a characterization of subdirect representation for arbitrary logics, develop a fruitful new notion of natural expansion, and contribute to the understanding of semilinear logics.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2019
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0280148
confidential S
mrcbC86 3+4 Article Mathematics|Logic|Philosophy
mrcbT16-e LOGIC|MATHEMATICS
mrcbT16-j 0.393
mrcbT16-s 0.474
mrcbT16-B 30.582
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2018
mrcbU14 85037378516 SCOPUS
mrcbU24 PUBMED
mrcbU34 000450596100001 WOS
mrcbU63 cav_un_epca*0292190 Studia Logica 0039-3215 1572-8730 Roč. 106 č. 6 2018 1065 1095 Springer