bibtype J - Journal Article
ARLID 0485151
utime 20240903170638.9
mtime 20180119235959.9
SCOPUS 85040725398
WOS 000424732300005
DOI 10.14736/kyb-2017-6-1026
title (primary) (eng) Stability, Empirical Estimates and Scenario Generation in Stochastic Optimization - Applications in Finance
specification
page_count 21 s.
media_type P
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 53
volume 6 (2017)
page_num 1026-1046
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword stochastic programming
keyword stochastic dominance
keyword empirical estimates
keyword financial applications
author (primary)
ARLID cav_un_auth*0101122
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
share 100
name1 Kaňková
name2 Vlasta
institution UTIA-B
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2017/E/kankova-0485151.pdf
cas_special
project
ARLID cav_un_auth*0321097
project_id GA15-10331S
agency GA ČR
abstract (eng) Economic and financial processes are mostly simultaneously influuenced by a random factor and a decision parameter. While the random factor can be hardly influenced, the decision parameter can be usually determined by a deterministic optimization problem depending on a corresponding probability measure. However, in applications the „underlying“ probability measure is often a little different, replaced by empirical one determined on the base of data or even (for numerical reason) replaced by simpler (mostly discrete) one. Consequently, real one and approximate one correspond to applications. In the paper we try to investigate their relationship. To this end we employ the results on stability based on the Wasserstein metric and L1 norm, their applications to empirical estimates and scenario generation. Moreover, we apply the achieved new results to simple financial applications. The corresponding model will a problem of stochastic programming.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2018
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0280355
confidential S
mrcbC86 3+4 Article|Proceedings Paper Computer Science Cybernetics
mrcbC86 3+4 Article|Proceedings Paper Computer Science Cybernetics
mrcbC86 3+4 Article|Proceedings Paper Computer Science Cybernetics
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-j 0.224
mrcbT16-s 0.321
mrcbT16-B 18.907
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2017
mrcbU14 85040725398 SCOPUS
mrcbU24 PUBMED
mrcbU34 000424732300005 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 53 č. 6 2017 1026 1046 Ústav teorie informace a automatizace AV ČR, v. v. i.